Cross-linked polymer electrolytes containing structurally dynamic disulfide bonds have been synthesized to investigate their combined ion transport and adhesive properties. Dynamic network polymers of varying cross-link densities are synthesized via thiol oxidation of a bisthiol monomer, 2,2′-(ethylenedioxy)diethanethiol, and tetrathiol cross-linker, pentaerythritol tetrakis(3-mercaptopropionate). At optimal loading of lithium bis(trifluoromethane-sulfonyl-imide) (LiTFSI) salt, the ionic conductivities (σ) at 90 °C are about 1 × 10 −4 and 1 × 10 −5 S/cm at the lowest and highest cross-linking, respectively. Notably, in comparison to the equivalent nondynamic network, the dynamic network shows a positive deviation in σ above 90 °C, which suggests the enhancement of ion transport occurs from the difference in structural relaxation on account of the dissociation of disulfide bonds. Lap shear adhesion and conductivity tests on ITO-coated glass substrates reveal the dynamic network exhibits a higher adhesive shear strength of 0.2 MPa (vs 0.03 MPa for the nondynamic network) and higher σ after the application of external stimulus (UV light or heat). The adhesive strength and σ are stable over multiple debonding/rebonding cycles and, thus, demonstrating the utility of these structurally dynamic networks as solid polymer electrolyte adhesives.
The ability to characterize bulk and interfacial transport properties of polymer electrolytes is critical to realizing their potential applications in electrochemical energy storage devices. In this study, we leverage custom microfabricated interdigitated electrode array (IDEs) as a platform to probe ion transport properties of polymer electrolytes films through electrochemical impedance spectroscopy (EIS) measurements. Using poly(ethylene oxide) (PEO) blended with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a model dry polymer electrolyte system, we investigate how geometric parameters of the IDEs influence the quality and analysis of EIS measurements. By focusing on films on the nanometer film thickness (ca. 50 nm), EIS measurements revealed diffusional processes near the electrode/polymer interface that may be difficult to observe with conventional thick films. Moreover, irreversible impedance spectra were observed at elevated temperatures when using IDEs with large electrode metal fractions. These irreversible processes were eliminated through passivation of the IDE with different oxides (SiO 2 , Al 2 O 3 , or TiO 2 ). Ultimately, the ionic conductivity of PEO-LiTFSI electrolytes is confidently determined when appropriate IDE geometries and equivalent circuits are used. Our work demonstrates the use of IDEs and nanothin polymer electrolytes films as a versatile platform for rapid and efficient interrogation of both bulk and interfacial electrochemical properties.
Molecularly doped conjugated polymers with polar side chains are an emerging class of conducting materials exhibiting enhanced and thermally stable conductivity. Here, we study the electronic conductivity (σ) and the corresponding thermal stability of two polythiophene derivatives comprising oligoethylene glycol side chains: one having oxygen attached to the thiophene ring (poly(3-(methoxyethoxyethoxy)thiophene) (P3MEET)) and the other having a methylene spacer between the oxygen and the thiophene ring (poly(3-(methoxyethoxyethoxymethyl)thiophene) (P3MEEMT)). Thin films were vapor-doped with fluorinated derivatives of tetracyanoquinodimethane (F n TCNQ, n = 4, 2, 1) to determine the role of dopant strength (electron affinity) in maximum achievable σ. Specifically, when vapor doping with F4TCNQ, P3MEET achieved a substantially higher σ of 37.1 ± 10.1 S/cm compared to a σ of 0.82 ± 0.06 S/cm for P3MEEMT. Structural characterization using a combination of X-ray and optical spectroscopy reveals that the higher degree of conformational order of polymer chains in the amorphous domain upon doping with F4TCNQ in P3MEET is a major contributing factor for the higher σ of P3MEET. Additionally, vapor-doped P3MEET exhibited superior thermal stability compared to P3MEEMT, highlighting that the presence of polar side chains alone does not ensure higher thermal stability. Molecular dynamics simulations indicate that the dopant–side-chain nonbond energy is lower in the P3MEET:F4TCNQ mixture, suggesting more favorable dopant–side-chain interaction, which is a factor in improving the thermal stability of a polymer/dopant pair. Our results reveal that additional factors such as polymer ionization energy and side-chain–dopant interaction should be taken into account for the design of thermally stable, highly conductive polymers.
ParagraphConducting organic materials, such as doped organic polymers, 1 molecular conductors, 2, 3 and emerging coordination polymers, 4 underpin technologies ranging from displays to flexible electronics. 5 Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping. 6 Furthermore, even materials that are intrinsically conductive, such as single-component molecular conductors, 7,8 require crystallinity for metallic behavior. However, commercial conducting polymers are often purposefully amorphous to aid in durability and processability. 9,10 Using molecular design to engender high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications, but there are no intrinsically conducting organic materials which maintain high conductivity when disordered. Here we show that the completely amorphous coordination polymer Ni tetrathiafulvalene tetrathiolate (NiTTFtt) displays intrinsic metallic conductivity. Despite its disordered structure, NiTTFtt exhibits remarkably high electronic conductivity (1280 S/cm) and intrinsically glassy metallic behavior. Analysis with advanced theory shows that these properties are enabled by strong molecular overlap and correlation that are robust to structural perturbations. This unusual set of structural and electronic features results in remarkably stable organic conductivity which is maintained in air for weeks and at temperatures up to 140 °C. Our results demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials. This both raises fundamental questions about how band-like transport can exist in the absence of periodic structure as well as suggests exciting new applications for these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.