Delayed cerebral ischemia resulting from extracellular hemoglobin is an important determinant of outcome in subarachnoid hemorrhage. Hemoglobin is scavenged by the CD163-haptoglobin system in the circulation, but little is known about this scavenging pathway in the human CNS. The components of this system were analyzed in normal cerebrospinal fluid and after subarachnoid hemorrhage. The intrathecal presence of the CD163-haptoglobin–hemoglobin scavenging system was unequivocally demonstrated. The resting capacity of the CD163-haptoglobin–hemoglobin system in the normal CNS was 50 000-fold lower than that of the circulation. After subarachnoid hemorrhage, the intrathecal CD163-haptoglobin–hemoglobin system was saturated, as shown by the presence of extracellular hemoglobin despite detectable haptoglobin. Hemoglobin efflux from the CNS was evident, enabling rescue hemoglobin scavenging by the systemic circulation. Therefore, the CNS is not capable of dealing with significant intrathecal hemolysis. Potential therapeutic options to prevent delayed cerebral ischemia ought to concentrate on augmenting the capacity of the intrathecal CD163-haptoglobin–hemoglobin scavenging system and strategies to encourage hemoglobin efflux from the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.