The kinase ataxia telangiectasia mutated and rad3 related (ATR) is a key regulator of the DNA-damage response and the apical kinase which orchestrates the cellular processes that repair stalled replication forks (replication stress) and associated DNA double-strand breaks. Inhibition of repair pathways mediated by ATR in a context where alternative pathways are less active is expected to aid clinical response by increasing replication stress.Here we describe the development of the clinical candidate 2 (AZD6738), a potent and selective sulfoximine morpholinopyrimidine ATR inhibitor with excellent preclinical physicochemical and pharmacokinetic (PK) characteristics. Compound 2 was developed improving aqueous solubility and eliminating CYP3A4 time-dependent inhibition starting from the earlier described inhibitor 1 (AZ20). The clinical candidate 2 has favorable human PK suitable for once or twice daily dosing and achieves biologically effective exposure at moderate doses. Compound 2 is currently being tested in multiple phase I/II trials as an anticancer agent.
Targeting the ataxia telangiectasia and Rad3-related (ATR) enzyme represents a promising anticancer strategy for tumors with DNA damage response (DDR) defects and replication stress, including inactivation of ataxia telangiectasia mutated (ATM) signaling. We report the dose-escalation portion of the phase I first-inhuman trial of oral ATR inhibitor BAY 1895344 intermittently dosed 5-80 mg twice daily (BID) in 21 patients with advanced solid tumors. The maximum tolerated dose was 40 mg BID 3 days on/4 days off. Commonest adverse events were manageable and reversible hematological toxicities. Partial responses were achieved in 4 patients and stable disease in 8 patients. Median duration of response was 315.5 days. Responders had ATM protein loss and/or deleterious ATM mutations and received doses 40 mg BID. Overall, BAY 1895344 is well tolerated with antitumor activity against cancers with certain DDR defects, including ATM loss. An expansion phase continues in patients with DDR deficiency. SIGNIFICANCE Oral BAY 1895344 was tolerable with antitumor activity in heavily pre-treated patients with various advanced solid tumors, particularly those with ATM deleterious mutations and/or loss of ATM protein; pharmacodynamic results supported a mechanism of action of increased DNA damage. Further study is warranted in this patient population.
Background: Bromodomain and extra-terminal motif (BET) protein inhibition is a promising cancer treatment strategy, notably for targeting MYC-or BRD4-driven diseases. A first-inhuman study investigated the safety, pharmacokinetics, maximum tolerated dose and recommended Phase II dose of the BET inhibitor BAY 1238097 in patients with advanced malignancies. Material and methods: In this Phase I, open-label, non-randomised, multicentre study, patients with cytologically or histologically confirmed advanced refractory malignancies received oral BAY 1238097 twice weekly in 21-day cycles using an adaptive dose-escalation design at a starting dose of 10 mg/week. Model-based dose-response analysis was performed to guide dose escalation. Safety, pharmacokinetics, pharmacodynamics and tumour response were evaluated. Results: Eight patients were enrolled at three dose levels (10 mg/week, n = 3; 40 mg/week, n = 3; 80 mg/week, n = 2). Both patients receiving 80 mg/week had dose-limiting toxicities (DLTs) (grade 3 vomiting, grade 3 headache and grade 2/3 back pain). The most common adverse events were nausea, vomiting, headache, back pain and fatigue. Pharmacokinetic analysis indicated a linear dose response with increasing dose. Two patients displayed prolonged stable disease; no responses were observed. Biomarker evaluation of MYC and HEXIM1 expression demonstrated an emerging pharmacokinetic/pharmacodynamic relationship, with a trend towards decreased MYC and increased HEXIM1 expression in response to treatment. Conclusion: The study was prematurely terminated due to the occurrence of DLTs at a dose below targeted drug exposure. Pharmacokinetic modelling indicated that an alternate dosing 3 schedule whereby DLTs could be avoided while reaching efficacious exposure was not feasible. Registration number: NCT02369029.
Background and ObjectivesDarolutamide is a novel androgen receptor (AR) antagonist approved for the treatment of nonmetastatic castration-resistant prostate cancer (nmCRPC). Accordingly, the drug–drug interaction (DDI) potential of darolutamide was investigated in both nonclinical and clinical studies.MethodsIn vitro studies were performed to determine the potential for darolutamide to be a substrate, inducer or inhibitor for cytochrome P450 (CYP) isoforms, other metabolizing enzymes and drug transporters. A phase I drug-interaction study in healthy volunteers evaluated the impact of co-administering rifampicin [CYP3A4 and P-glycoprotein (P-gp) inducer] and itraconazole [CYP3A4, P-gp and breast cancer resistance protein (BCRP) inhibitor] on the pharmacokinetics of darolutamide. Two further phase I studies assessed the impact of co-administering oral darolutamide on the pharmacokinetics of midazolam (sensitive CYP3A4 substrate) and dabigatran etexilate (P-gp substrate) and the impact on the pharmacokinetics of co-administered rosuvastatin [a substrate for BCRP, organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and organic anion transporter (OAT)3].ResultsIn vitro, darolutamide was predominantly metabolized via oxidative biotransformation catalyzed by CYP3A4 and was identified as a substrate for P-gp and BCRP. The enzymatic activity of nine CYP isoforms was not inhibited or slightly inhibited in vitro with darolutamide, and a rank order and mechanistic static assessment indicated that risk of clinically relevant DDIs via CYP inhibition is very low. In vitro, darolutamide exhibited no relevant induction of CYP1A2 or CYP2B6 activity. Inhibition of BCRP-, P-gp-, OAT3-, MATE1-, MATE2-K-, OATP1B1- and OATP1B3-mediated transport was observed in vitro. Phase I data showed that darolutamide exposure increased 1.75-fold with co-administered itraconazole and decreased by 72% with rifampicin. Co-administration of darolutamide with CYP3A4/P-gp substrates showed no effect or only minor effects. Rosuvastatin exposure increased 5.2-fold with darolutamide because of BCRP and probably also OATPB1/OATPB3 inhibition.ConclusionsDarolutamide has a low potential for clinically relevant DDIs with drugs that are substrates for CYP or P-gp; increased exposure of BCRP and probably OATP substrates was the main interaction of note.Electronic supplementary materialThe online version of this article (10.1007/s13318-019-00577-5) contains supplementary material, which is available to authorized users.
The mutant IDH1 (mIDH1) inhibitor BAY1436032 demonstrated robust activity in preclinical AML models, supporting clinical evaluation. In the current dose-escalation study, BAY1436032 was orally administered to 27 mIDH1 AML subjects across 4 doses ranging from 300 to 1500 mg twice-daily. BAY1436032 exhibited a relatively short half-life and apparent non-linear pharmacokinetics after continuous dosing. Most subjects experienced only partial target inhibition as indicated by plasma R-2HG levels. BAY1436032 was safe and a maximum tolerated dose was not identified. The median treatment duration for all subjects was 3.0 months (0.49–8.5). The overall response rate was 15% (4/27; 1 CRp, 1 PR, 2 MLFS), with responding subjects experiencing a median treatment duration of 6.0 months (3.9–8.5) and robust R-2HG decreases. Thirty percent (8/27) achieved SD, with a median treatment duration of 5.5 months (3.1–7.0). Degree of R-2HG inhibition and clinical benefit did not correlate with dose. Although BAY1436032 was safe and modestly effective as monotherapy, the low overall response rate and incomplete target inhibition achieved at even the highest dose tested do not support further clinical development of this investigational agent in AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.