The ability of a single genome to produce distinct and often dramatically different male and female forms is one of the wonders of animal development. In Drosophila melanogaster, most sexually dimorphic traits are controlled by sex-specific isoforms of the doublesex (dsx) transcription factor, and dsx expression is mostly limited to cells that give rise to sexually dimorphic traits. However, it is unknown how this mosaic of sexually dimorphic and monomorphic organs arises. Here, we characterize the cis-regulatory sequences that control dsx expression in the foreleg, which contains multiple types of sex-specific sensory organs. We find that separate modular enhancers are responsible for dsx expression in each sexually dimorphic organ. Expression of dsx in the sex comb is co-regulated by two enhancers with distinct spatial and temporal specificities that are separated by a genitalia-specific enhancer. The sex combspecific enhancer from D. willistoni, a species that primitively lacks sex combs, is not active in the foreleg. Thus, the mosaic of sexually dimorphic and monomorphic organs depends on modular regulation of dsx transcription by dedicated cell type-specific enhancers.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments.
The Drosophila melanogaster laboratory model has been used extensively in studies of sexual conflict because during the process of courtship and mating, males impose several costs upon females (e.g., reduced fecundity). One important difference between the laboratory and the wild is that females in the laboratory lack a spatial refuge from persistent male courtship. Here, we describe two experiments that examine the potential consequences of a spatial refuge for females. In the first experiment, we examined the influence of a spatial refuge on mating rate of females, and in the second one we examined its influence on females' lifetime fecundity. We found that females mated about 25% less often when a spatial refuge was available, but that the absence of a spatial refuge did not substantially increase the level of male-induced harm to females (i.e., sexual conflict).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.