Streptozotocin-induced renal fibrosis, PAI-1 expression, TGF-beta1 expression, and macrophage infiltration occur via mineralocorticoid receptor, and spironolactone ameliorates renal fibrosis presumably via the inhibition of macrophage infiltration, PAI-1 expression, and TGF-beta1 expression in streptozotocin-induced early diabetic injury.
We determined whether aquaporin of collecting duct (AQP-CD) is involved in pathogenesis of water retention in rats with experimental models of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) and liver cirrhosis. SIADH rats were made by administering 1-desamino-8-D-arginine vasopressin (DDAVP) subcutaneously and providing them with a liquid diet. Serum Na levels decreased to < 120 meq/l on day 2, and hyponatremia persisted throughout the rest of observation period. Six hours after the DDAVP infusion, the expression of AQP-CD mRNA significantly increased by 198%, followed by > 144% increases in its expression during the 14-day observation period. On day 7, the increased expression of AQP-CD mRNA was abolished after the administration of an antidiuretic, nonpeptide arginine vasopressin (AVP) antagonist, OPC-31260, which was closely related to a marked diuresis and a prompt normalization of serum Na levels in SIADH rats. Rats were made cirrhotic by injecting a mixture of carbon tetrachloride and olive oil subcutaneously for 3 mo. The expression of AQP-CD mRNA was increased by 164% in the decompensated cirrhotic rats. The blockade of AVP action by OPC-31260 significantly diminished its expression. These results indicate that water channel AQP-CD plays an important role in water retention in pathological states of SIADH and liver cirrhosis.
Abstract-Long-term exposure of uninephrectomized rats to desoxycorticosterone acetate (DOCA)/salt induces cardiac fibrosis and hypertrophy through mineralocorticoid receptors (MRs). However, the underlying cellular mechanisms remain unclear. To determine whether Na/H exchange isoform 1 (NHE1) is involved in the cellular mechanisms, we examined the effects of a specific NHE1 inhibitor, cariporide, and an MR antagonist, spironolactone, on DOCA/saltinduced cardiac fibrosis and hypertrophy. Uninephrectomized rats were given 20 mg of DOCA (single subcutaneous injection) plus 0.9% NaCl/0.3% KCl to drink and were killed at 8 days. Two groups of rats given DOCA/salt were treated with either spironolactone (50 mg/kg per day SC) or cariporide (30 mg/kg per day PO) for 8 days. Control rats were treated with only high salt after the operation. The DOCA/salt-induced perivascular collagen deposition was completely abolished by cariporide and spironolactone. DOCA/salt-induced interstitial collagen deposition was partially and completely suppressed by spironolactone and cariporide, respectively. The rats exposed to DOCA/salt had cardiocyte hypertrophy in the subendocardial and subepicardial regions, a finding that was completely inhibited by cariporide but not by spironolactone. In rats given DOCA/salt, NHE1 protein expression was markedly increased. This was partially and completely reversed by spironolactone and cariporide, respectively. We concluded that cardiac NHE1 contributes to DOCA/salt-induced cardiac fibrosis and hypertrophy and that the NHE1 inhibitor cariporide completely prevents the detrimental effects of DOCA/salt on the heart. We also demonstrated that DOCA/salt-induced cardiac injury through the MRs partly occurs through NHE1 activation.
Abstract-We examined whether and how peritubular capillary (PTC) loss in the renal cortex contributes to the development of deoxycorticosterone acetate (DOCA)/salt-induced tubulointerstitial fibrosis. Uninephrectomized rats provided with 0.9% NaCl/0.3% KCl drinking solution ad libitum were divided into control, DOCA, and spironolactone groups, which were administered vehicle, DOCA alone, and DOCA plus spironolactone for 1 (initial phase) and 4 weeks (delayed phase), respectively. Exposure to DOCA initiated a sequence of events that initially involved reduced PTC density, followed by a delayed response that involved further reduced PTC density, development of tubulointerstitial fibrosis and hypertension, enhanced expression of transforming growth factor-1 and connective tissue growth factor, and impaired renal function. Concomitant with the reduced PTC density, the 2 hypoxia-responsive angiogenic factors (vascular endothelial growth factor and hypoxia-inducible factor-1␣) and the antiangiogenic factor (thrombospondin-1) were upregulated in cortical tubular cells of the DOCA group during the 2 phases and only in the delayed phase, respectively. In the DOCA group, PTC endothelial cell apoptosis was enhanced during the 2 phases, and PTC endothelial cell proliferation was inhibited in the delayed phase. In accordance with upregulation of thrombospondin-1, p53 expression was enhanced in the DOCA group in the delayed phase. The initial and delayed effects of DOCA were blocked in the spironolactone group. We conclude that exposure to DOCA initially caused the reduced PTC density associated with enhanced apoptosis independent of thrombospondin-1, which induced tubulointerstitial fibrosis via p53-mediated thrombospondin-1 activation, and spironolactone conversely corrected the effects of DOCA to prevent fibrosis. (Hypertension. 2008;51:749-754.)
The present study was undertaken to determine whether a non-peptide arginine vasopressin (AVP) antagonist [5-dimethylamino-1-(4-(2-methylbenzoylamino)benzoyl]-2,3,4,5-tetra hydro-1H- benzazepine] (OPC-31260) improves the impaired water excretion in rats with experimental liver cirrhosis. Male Wistar rats weighing 200 to 250 g were injected in an equal volume (4 ml/kg) of carbon tetrachloride and olive oil at an interval of seven days for three months, causing liver cirrhosis with ascites. Control rats were injected with only olive oil. Body weight (body wt) and hematocrit (Hct) were lower in the cirrhotic rats than the control rats (body wt 360.7 vs. 238.5 g, P < 0.01; Hct 46.3 vs. 39.2%, P < 0.01). A water loading test (30 ml/kg) was carried out and 20-minute urine collections were made for three hours. The percent of water load excreted was 62.5% in the cirrhotic rats, a value significantly less than that of 102.1% in the control rats. However, its percent increased to 215.1% after the oral administration of 5 mg/kg OPC-31260 (P < 0.01). Minimal urinary osmolality (UOsm) was 185.5 mOsm/kg H2O in the cirrhotic rats receiving the vehicle, a value greater than the control rats of 125.5 mOsm/kg H2O (P < 0.01). The oral administration of 5 mg/kg OPC-31260 reduced minimal UOsm to 85.2 mOsm/kg H2O in the cirrhotic rats (P < 0.01). Urinary excretion of sodium was lower in the cirrhotic rats than the control rats (87.1 vs. 312.4 microEq/3 hr, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.