In this paper, we describe the PERFORM system for the continuous remote monitoring and management of Parkinson's disease (PD) patients. The PERFORM system is an intelligent closed-loop system that seamlessly integrates a wide range of wearable sensors constantly monitoring several motor signals of the PD patients. Data acquired are pre-processed by advanced knowledge processing methods, integrated by fusion algorithms to allow health professionals to remotely monitor the overall status of the patients, adjust medication schedules and personalize treatment. The information collected by the sensors (accelerometers and gyroscopes) is processed by several classifiers. As a result, it is possible to evaluate and quantify the PD motor symptoms related to end of dose deterioration (tremor, bradykinesia, freezing of gait (FoG)) as well as those related to over-dose concentration (Levodopa-induced dyskinesia (LID)). Based on this information, together with information derived from tests performed with a virtual reality glove and information about the medication and food intake, a patient specific profile can be built. In addition, the patient specific profile with his evaluation during the last week and last month, is compared to understand whether his status is stable, improving or worsening. Based on that, the system analyses whether a medication change is needed—always under medical supervision—and in this case, information about the medication change proposal is sent to the patient. The performance of the system has been evaluated in real life conditions, the accuracy and acceptability of the system by the PD patients and healthcare professionals has been tested, and a comparison with the standard routine clinical evaluation done by the PD patients' physician has been carried out. The PERFORM system is used by the PD patients and in a simple and safe non-invasive way for long-term record of their motor status, thus offering to the clinician a precise, long-term and objective view of patient's motor status and drug/food intake. Thus, with the PERFORM system the clinician can remotely receive precise information for the PD patient's status on previous days and define the optimal therapeutical treatment.
Tremor is the most common motor disorder of Parkinson's disease (PD) and consequently its detection plays a crucial role in the management and treatment of PD patients. The current diagnosis procedure is based on subject-dependent clinical assessment, which has a difficulty in capturing subtle tremor features. In this paper, an automated method for both resting and action/postural tremor assessment is proposed using a set of accelerometers mounted on different patient's body segments. The estimation of tremor type (resting/action postural) and severity is based on features extracted from the acquired signals and hidden Markov models. The method is evaluated using data collected from 23 subjects (18 PD patients and 5 control subjects). The obtained results verified that the proposed method successfully: 1) quantifies tremor severity with 87 % accuracy, 2) discriminates resting from postural tremor, and 3) discriminates tremor from other Parkinsonian motor symptoms during daily activities.
Wearable technologies for health monitoring have become a reality in the last few years. So far, most research studies have focused on assessments of the technical performance of these systems, as well as the validation of the clinical outcomes. Nevertheless, the success in the acceptance of these solutions depends not only on the technical and clinical effectiveness, but on the final user acceptance. In this work the compliance of a telehealth system for the remote monitoring of Parkinson's disease (PD) patients is presented with testing in 32 PD patients. This system, called PERFORM, is based on a Body Area Network (BAN) of sensors which has already been validated both from the technical and clinical point for view. Diverse methodologies (REBA, Borg and CRS scales in combination with a body map) are employed to study the comfort, biomechanical and physiological effects of the system. The test results allow us to conclude that the acceptance of this system is satisfactory with all the levels of effect on each component scoring in the lowest ranges. This study also provided useful insights and guidelines to lead to redesign of the system to improve patient compliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.