Recent reports have challenged the notion that retroviruses and retroviral vectors integrate randomly into the host genome. These reports pointed to a strong bias toward integration in and near gene coding regions and, for gammaretroviral vectors, around transcription start sites. Here, we report the results obtained from a large-scale mapping of 572 retroviral integration sites (RISs) isolated from cells of 9 patients with X-linked SCID (SCID-X1) treated with a retrovirus-based gene therapy protocol. Our data showed that two-thirds of insertions occurred in or very near to genes, of which more than half were highly expressed in CD34 + progenitor cells. Strikingly, one-fourth of all integrations were clustered as common integration sites (CISs). The highly significant incidence of CISs in circulating T cells and the nature of their locations indicate that insertion in many gene loci has an influence on cell engraftment, survival, and proliferation. Beyond the observed cases of insertional mutagenesis in 3 patients, these data help to elucidate the relationship between vector insertion and long-term in vivo selection of transduced cells in human patients with SCID-X1.
SummaryLow-dose exposures to common environmental chemicals that are deemed safe individually may be combining to instigate carcinogenesis, thereby contributing to the incidence of cancer. This risk may be overlooked by current regulatory practices and needs to be vigorously investigated.
Retroviral vectors with self-inactivating (SIN) long-terminal repeats not only increase the autonomy of the internal promoter but may also reduce the risk of insertional upregulation of neighboring alleles. However, gammaretroviral as opposed to lentiviral packaging systems produce suboptimal SIN vector titers, a major limitation for their clinical use. Northern blot data revealed that low SIN titers were associated with abundant transcription of internal rather than full-length transcripts in transfected packaging cells. When using the promoter of Rous sarcoma virus or a tetracycline-inducible promoter to generate full-length transcripts, we obtained a strong enhancement in titer (up to 4 Â 10 7 transducing units per ml of unconcentrated supernatant). Dual fluorescence vectors and Northern blots revealed that promoter competition is a rate-limiting step of SIN vector production. SIN vector stocks pseudotyped with RD114 envelope protein had high transduction efficiency in human and non-human primate cells. This study introduces a new generation of efficient gammaretroviral SIN vectors as a platform for further optimizations of retroviral vector performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.