The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. A nonlinear activation function usually follows the linear operation in order to provide for nonlinearity of the network and set the next state of the neuron. In this paper we introduce a novel class of artificial neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before possible application of a nonlinear activation function. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. The main emphasis of the research presented here is on morphological associative memories. We examine the computing and storage capabilities of morphological associative memories and discuss differences between morphological models and traditional semilinear models such as the Hopfield net.
The theory of art$cial neural networks has been successfully applied to a wide variety of pattem recognition problems. In this theory, thefirst step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and examine the computing capabilities of morphological neural networks. As particular examples of a morphological neural network we discuss morphological associative memories and morphological perceptrons.
Recent advances in the biophysics of computation and neurocomputing models have brought to the foreground the importance of dendritic structures in a single neuron cell. Dendritic structures are now viewed as the primary autonomous computational units capable of realizing logical operations. By changing the classic simplified model of a single neuron with a more realistic one that incorporates the dendritic processes, a novel paradigm in artificial neural networks is being established. In this work, we introduce and develop a mathematical model of dendrite computation in a morphological neuron based on lattice algebra. The computational capabilities of this enriched neuron model are demonstrated by means of several illustrative examples and by proving that any single layer morphological perceptron endowed with dendrites and their corresponding input and output synaptic processes is able to approximate any compact region in higher dimensional Euclidean space to within any desired degree of accuracy. Based on this result, we describe a training algorithm for single layer morphological perceptrons and apply it to some well-known nonlinear problems in order to exhibit its performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.