Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes.
Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single cell dissemination, controlled by cadherinmediated cell-cell junctions. In clinical samples, E-cadherin expressing and deficient tumors both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Using spatially defined organotypic culture, intravital microscopy of mammary tumors in mice and in silico modeling, we here identify cell density regulation by 3D tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions, including E-cadherin and p120-catenin, resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas singlecell escape depended on locally free tissue space. These data indicate that cadherins and ECM confinement cooperate to determine unjamming transitions towards step-wise epithelial fluidization and, ultimately, cell individualization.
The interaction of cells within their microenvironmental niche is fundamental to cell migration, positioning, growth and differentiation in order to form and maintain complex tissue organization and function. Third harmonic generation (THG) microscopy is a label-free scatter process that is elicited by water-lipid and water-protein interfaces, including intra-and extracellular membranes, and extracellular matrix structures. In applied life sciences, THG delivers a versatile contrast modality to complement multi-parameter fluorescence, second harmonic generation and fluorescence lifetime microscopy, which allows detection of cellular and molecular cell functions in threedimensional tissue culture and small animals. In this Commentary, we review the physical and technical basis of THG, and provide considerations for optimal excitation, detection and interpretation of THG signals. We further provide an overview on how THG has versatile applications in cell and tissue research, with a particular focus on analyzing tissue morphogenesis and homeostasis, immune cell function and cancer research, as well as the emerging applicability of THG in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.