Protein Kinase C (PKC) is a family of serine/threonine kinases that play a central role in cellular signal transduction. The second messenger diacylglycerol having two long carbon chains acts as the endogenous ligand for the PKCs. Polyphenol curcumin, the active constituent of Curcuma longa is an anticancer agent and modulates PKC activity. To develop curcumin derivatives as effective PKC activators, we synthesized several long chain derivatives of curcumin, characterized their absorption and fluorescence properties and studied their interaction with the activator-binding second cysteinerich C1B subdomain of PKCδ, PKCε and PKCθ. Curcumin (1) and its C16 long chain analog (4) quenched the intrinsic fluorescence of PKCδC1B, PKCεC1B and PKCθC1B in a manner similar to that of PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). The EC 50 s of the curcumin derivatives for fluorescence quenching varied in the range of 4-11 μM, whereas, EC 50 s for TPA varied in the range of 3-6 μM. Fluorescence emission maxima of 1 and 4 were blue shifted and the fluorescence anisotropy values were increased in the presence of the C1B domains similar to that shown by the fluorescent analog of TPA, sapintoxin-D, confirming that they were bound to the proteins. Molecular docking of 1 and 4 with novel PKC C1B revealed that both the molecules form hydrogen bonds with the protein residues. The present result shows that curcumin and its long chain derivatives bind to the C1B subdomain of novel PKCs and can be further modified structurally to improve its binding and activity.
Background The hematological abnormalities are assumed to be involved in the disease progression of COVID-19. However, the actual associations between specific blood parameters and COVID-19 are not well understood. Here we aimed to assess the correlations between hematological parameters and the severity of COVID-19. Methods We included COVID-19 patients who were admitted to Evercare Hospital Ltd, Dhaka, Bangladesh, between November 10, 2020, to April 12, 2021, with a confirmed case of RT-PCR test. We recorded demographic information, clinical data, and routine hematological examination results of all COVID-19 patients. We performed statistical analyses and interpretation of data to compare severe COVID-19 patients (SCP) and non-severe COVID-19 patients (NSCP). Results The age and BMI of the admitted COVID-19 patients were 48.79±8.53 years and 25.82±3.75 kg/m2. This study included a total of 306 hospitalized COVID-19 patients. Among them, NSCP and SCP were 198 and 108, respectively. And we recorded 12 deaths from SCP. We observed the alterations of several hematological parameters between SCP and NSCP. Among them, we noticed the increased levels of C-reactive protein (CRP), d-dimer, and ferritin showed good indicative value to evaluate the severity of COVID-19. Also, there were positive correlations among these parameters. Moreover, we found correlations between the outcomes of COVID-19 patients with patient’s demographics and comorbid diseases. Conclusion Based on our results, CRP, d-dimer, and ferritin levels at admission to hospitals represent simple assessment factors for COVID-19 severity and the treatment decisions at the hospital setup. These blood parameters could serve as indicators for the prognosis and severity of COVID-19. Therefore, our study findings might help to develop a treatment protocol for COVID-19 patients at the hospital setup.
BackgroundThe objective of the present study aimed to investigate the effect of CoQ10 treatment on isoprenaline (ISO)-induced cardiac remodeling in rats.MethodsRats were divided into three groups namely Control group, ISO treated group and CoQ10 + ISO treated group, each consisting of 6 rats. The cardiac specific CK-MB, AST, ALT activity and other oxidative stress parameters were estimated in heart and kidneys. Additionally histological examination was also performed to visualize the inflammatory cells infiltration and fibrosis in both tissues.ResultsAdministration of ISO resulted in an increase in the heart-to-body weight (HW/BW) ratio and an also increased the serum CK-MB, AST and ALT enzyme activity. Serum levels of lipid peroxidation products, and oxidative stress markers showed significant increase in ISO-treated rats. Histopathological examination of heart tissue revealed focal areas of endocardium degeneration, mononuclear cells infiltration, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. Similar degeneration was also found in kidneys. Treatment with CoQ10 (100 mg/kg) significantly improved the oxidative stresses in ISO treated rats. Moreover, CoQ10 treatment prevented inflammatory cells infiltration and reduced fibrosis in ISO administered rats.ConclusionIn conclusion, our study provides evidence that CoQ10 may prevent the development of cardiac remodeling, and fibrosis in ISO administered rats.
Alcohols regulate the expression and function of PKC (protein kinase C), and it has been proposed that an alcohol-binding site is present in PKC alpha in its C1 domain, which consists of two cysteine-rich subdomains, C1A and C1B. A PKC epsilon-knockout mouse showed a significant decrease in alcohol consumption compared with the wild-type. The aim of the present study was to investigate whether an alcohol-binding site could be present in PKC epsilon. Here we show that ethanol inhibited PKC epsilon activity in a concentration-dependent manner with an EC50 (equilibrium ligand concentration at half-maximum effect) of 43 mM. Ethanol, butanol and octanol increased the binding affinity of a fluorescent phorbol ester SAPD (sapintoxin-D) to PKC epsilon C1B in a concentration-dependent manner with EC50 values of 78 mM, 8 mM and 340 microM respectively, suggesting the presence of an allosteric alcohol-binding site in this subdomain. To identify this site, PKC epsilon C1B was photolabelled with 3-azibutanol and 3-azioctanol and analysed by MS. Whereas azibutanol preferentially labelled His236, Tyr238 was the preferred site for azioctanol. Inspection of the model structure of PKC epsilon C1B reveals that these residues are 3.46 A (1 A=0.1 nm) apart from each other and form a groove where His236 is surface-exposed and Tyr238 is buried inside. When these residues were replaced by alanine, it significantly decreased alcohol binding in terms of both photolabelling and alcohol-induced SAPD binding in the mutant H236A/Y238A. Whereas Tyr238 was labelled in mutant H236A, His236 was labelled in mutant Y238A. The present results provide direct evidence for the presence of an allosteric alcohol-binding site on protein kinase C epsilon and underscore the role of His236 and Tyr238 residues in alcohol binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.