The distribution of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity was histochemically investigated in the Japanese quail brain. This enzyme is now considered responsible for the synthesis of nitric oxide, a novel neural messenger whose distribution has not been described in the avian brain until now. The histochemical technique provides a simple and reliable method for staining selected populations of neurons throughout the avian brain. In the telencephalon several regions showed heavily stained NADPH-diaphorase positive neurons and processes. In particular the paleostriatal-paraolfactory lobe complex showed the greatest presence of both positive cells and processes. Neurons and processes were also observed in several regions of the hyperstriatum as well as in the archistriatal nucleus taeniae. Some regions, such as the ectostriatum and the hippocampus, had no positive elements. In the diencephalon, the magnocellular hypothalamic system, which in mammals shows NADPH-diaphorase activity, did not show any particular accumulation of reaction product. On the contrary, retinorecipient areas, such as the visual suprachiasmatic nucleus and the lateral geniculate complex, displayed a composite structure of both positive neurons and processes. The brainstem revealed a large NADPH-diaphorase positive population extending through the tegmental nuclei to the locus coeruleus and subcoeruleus. A complex organization was also observed in the optic lobe, where fusiform elements were distributed within the stratum griseum and superficialis of the tectum. In the medulla, a dense terminal field was observed at the level of the nucleus of the solitary tract, whereas scattered neurons were located within the reticular nuclei. Although the staining of neurons and tracts was highly selective, the positive cells did not correspond to any single known neurotransmitter, neuropeptide, or neuroactive molecule system. Several sensory pathways were heavily stained for the NADPH-diaphorase, including part of the olfactory, visual, and auditory pathways. The findings of the present study reveal that the NADPH-diaphorase-containing systems in the avian brain are organized according to a pattern comparable, because of its complexity, to that observed in mammals. However, important interspecific differences suggest that this novel neural system might be involved in diverse tasks.
The effects of testosterone on the volume and cytoarchitecture of the sexually dimorphic nucleus of the preoptic area (POM) were investigated in male and female Japanese quail. It was confirmed that castration decreases the POM volume in males and that, in gonadectomized birds of both sexes, testosterone increases this volume to values similar to those observed in intact sexually mature males. This suggests that the sex difference in POM volume results from a differential activation by T so that this brain morphological characteristic is not truly differentiated in the organizational sense. This conclusion was extended here by demonstrating that males exposed to a photoperiod simulating long days and that are known to have high plasma levels of testosterone have a larger POM than short-day males that have inactive testes. Detailed morphometric studies of POM neurons revealed a structural heterogeneity within the nucleus. A population of large neurons (cross-sectional area larger than 70-80 microns2) was well represented in the dorsolateral but was almost absent in the medial part of POM. This lateral population of neurons was sensitive to variations of testosterone levels in males but not in females. The cross-sectional area, diameter, and perimeter of the dorsolateral neurons were significantly increased in males exposed to high testosterone levels (intact birds exposed to long days or castrated birds treated with the steroid). These changes were not observed in the medial part of the nucleus. Interestingly, the size of the dorsolateral neurons was not affected by testosterone treatments in females. These results suggest that the swelling of neurons in the lateral POM of males might be responsible for the increase in total volume of the nucleus, which is observed in physiological situations associated with a high testosteronemia. In addition, the sensitivity to testosterone of the dorsolateral neurons in the POM appears to be sexually differentiated. This differential response to testosterone might represent a truly dimorphic feature in the organizational sense and additional studies manipulating the early steroid environment should be performed to test this possibility.
In male rodents, the arginine-vasopressin-immunoreactive (AVP-ir) neurones of the bed nucleus of the stria terminalis (BNST) and medial amygdala are controlled by plasma testosterone levels (decreased after castration and restored by exogenous testosterone). AVP transcription in these nuclei is increased in adulthood by a synergistic action of the androgenic and oestrogenic metabolites of testosterone and, accordingly, androgen and oestrogen receptors are present in both BNST and medial amygdala. We used knockout mice lacking a functional aromatase enzyme (ArKO) to investigate the effects of a chronic depletion of oestrogens on the sexually dimorphic AVP system. Wild-type (WT) and ArKO male mice were perfused 48 h after an i.c.v. colchicine injection and brain sections were then processed for AVP immunocytochemistry. A prominent decrease (but not a complete suppression) of AVP-ir structures was observed in the BNST and medial amygdala of ArKO mice by comparison with the WT. Similarly, AVP-ir fibres were reduced in the lateral septum of ArKO mice and but not in the medial preoptic area, a region where the AVP system is not sexually dimorphic in rats. No change was detected in the supraoptic and suprachiasmatic nuclei. However, a decrease in AVP-ir cell numbers was however, detected in one subregion of the paraventricular nucleus. These data support the hypothesis that the steroid-sensitive sexually dimorphic AVP system of the mouse forebrain is mainly under the control of aromatized metabolites of testosterone.
Immunocytochemistry was used to determine if photoperiod and/or sex have any effect on the pattern of the luteinizing hormone-releasing hormone (LHRH) system in the brain of the Japanese quail. Immunopositive perikarya were found within three major areas of the brain: the rostral paraolfactory lobe, the preoptic, and the septal region. A quantitative analysis of LHRH cell numbers was performed on male and female quail after two photoperiodic treatments: sexually mature birds exposed to 24 weeks of 20 h light: 4 h darkness (20L:4D), and birds with a regressed reproductive system (induced by transfer from a photoregime of 20L:4D to 25 short days of 8L:16D). Two-way analysis of variance showed that short-day males display significantly (p less than 0.05) more immunopositive perikarya (607 +/- 134) than long-day males (291 +/- 114), short-day females (293 +/- 103) or long-day females (330 +/- 92). The density of LHRH-immunoreactive nerve fibres and the intensity of the immunostaining in the median eminence were always greater in long-day sexually mature quail (male and female) than in animals exposed to 25 days of 8L:16D. These results demonstrate that the LHRH system of the quail is influenced by photoperiod and mirrors sexual differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.