BackgroundPropolis is the bee product noted for multiple biological effects, and therefore it is widely used for the prevention and treatment of a variety of diseases. The active substances of propolis are easily soluble in ethanol. However ethanolic extracts cannot be used in treatment of certain diseases encountered in ophthalmology, pediatrics, etc. Unfortunately, the main biologically active substances of propolis are scarcely soluble in water, oil and other solvents usually used in pharmaceutical industry. The aim of this study was to investigate chemical composition, radical scavenging and antimicrobial activity of propolis extracts differently made in nonethanolic solvents.MethodsTotal content of phenolic compounds in extracts was determined using Folin-Ciocalteu method. Chemical composition and radical scavenging activity of extracts were determined using HPLC system with free radical reaction detector. Antimicrobial activity of examined preparations was evaluated using the agar-well diffusion assay.ResultsTotal amount of phenolic compounds in extracts made in polyethylene glycol 400 (PEG) and water mixture or in PEG, olive oil and water mixture at 70 °C was comparable to that of ethanolic extract. Predominantly identified compounds were phenolic acids, which contribute ca. 40 % of total radical scavenging activity.Investigated nonethanolic extracts inhibited the growth and reproduction of all tested microrganisms. Antimicrobial activity of some extracts was equal or exceeded the antimicrobial effect of ethanolic extract. Extracts made in pure water or oil only at room temperature, contained more than 5 – 10-fold lower amount of phenolic compounds, and demonstrated no antimicrobial activity.ConclusionsNonethanolic solvent complex and the effect of higher temperature allows more effective extraction of active compounds from propolis. Concentration of total phenolic compounds in these extracts does not differ significantly from the concentration found in ethanolic extract. Propolis nonethanolic extracts have radical scavenging and antimicrobial activity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-015-0677-5) contains supplementary material, which is available to authorized users.
The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations.
The increased interest in functional materials of natural origin has resulted in a higher market demand for preservative-free, “clean label”, or natural ingredients-based products. The gummy bear food supplements are more acceptable to consumers and have fewer limitations compared to other dosage forms. The aim of our study was to produce natural ingredients-based gummy bear composition, and evaluate the influence of the selected ingredients on the product’s textural properties, its acceptance in vivo, and the gummy bear’s quality. The optimal base composition was determined using a surface response design: gelatin 4.3 g and agave syrup 6.3 g. The investigated sweeteners did not affect the textural properties (p > 0.05). However, further studies demonstrated that a 100% increase of agave results in up to 27% higher flexibility (p < 0.05). The addition of calcium and cholecalciferol reduced firmness by 59.59 ± 1.45% (p < 0.05). On the other hand, acai berry extract had no significant effect. The presence of calcium resulted in a decreased smell and taste; however, the data indicated that experimental texture analysis is a more accurate technique than in vivo evaluation. The acai berry extract did not improve all of the tested sensory properties. We can conclude that the suggested gummy bear base can be supplemented with various active ingredients and commercialized, though further studies are needed to investigate the other natural sources to mask the unpleasant taste of active ingredients and avoid water loss.
The physicochemical properties, especially pH value of dental medicines, have significant influence on the health of oral cavity tissues. The pH of formulations should correspond to the value of saliva pH (5.5–8.0). For carbomer-based gels, the required pH value is obtained by neutralizing them with alkaline components, which leads to their structuring (thickening). This affects the physical properties of the gel, its residence time at the application site and the rate of release of active pharmaceutical ingredient. Therefore, the main purpose of this study is to evaluate the rheological, textural, and biopharmaceutical properties of Carbomer Polacril® 40P-based dental gel depending on the pH value. Evaluation of the rheological properties of gel preparations were performed by measuring the structural viscosity of the samples as a function of pH and temperature. The textural properties of the gel were evaluated by performing tests regarding back extrusion and spreadability. Carbomer Polacril® 40P-based gels haven’t shown noticeable thixotropic behavior, and were characterized by plastic flow in the whole studied pH range. The structural viscosity at the selected average pH value hasn’t differed at storage (25 °C) and application (37 °C) temperature. Texture studies of dental gels have shown a strong correlation with rheoparameters. Their rheological behavior and textural properties haven’t changed significantly between the pH range of 5.5–6.6. The relatively narrow range of working pH values does not affect the change in the viscosity of the preparation significantly and, consequently, does not affect the release of APIs from the developed Carbomer Polacril® 40P-based dental gel.
The aim of the study was to analyze phenolic acids in Lithuanian propolis and to compare it with the composition of propolis in neighboring countries (Latvia and Poland) according to the predominant flora in the collecting places. The study was also aimed at the evaluation of the effect of the layer thickness (mm) of the harvested propolis on the quality of the raw material in determining the amount of phenolic acids.Materials and methods. The object of the study was propolis collected in Lithuania, Poland, and Latvia in late July of 2006 and 2007. The qualitative and quantitative analysis of phenolic acids was performed using the high-performance liquid chromatography technique (HPLC).Results. The results of the study showed that the quantitative and qualitative composition of phenolic acids in propolis depended on the plants from which the bees in the area collected substances for the raw material of propolis. The predominant phenolic acids were determined to be ferulic and coumaric acids, and they may be among the main indicators of quality in the standardization of the raw material and preparations of propolis.Conclusion. We created an HPLC-based analysis method for the identification and quantification of phenolic acids in propolis. The variety of phenolic acids in propolis depends on the vegetation predominating in the harvesting area. Studies have shown that the highest amount of phenolic acids is observed in propolis harvested in areas characterized by the predominance of deciduous trees and meadows. Results have also shown that ferulic and coumaric acids are the predominant phenolic acids in propolis. The thickness of the layer of the collected propolis in the hive also influences its chemical composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.