We demonstrate that near the threshold, the pi pi scattering amplitude contains a pole with the quantum numbers of the vacuum--commonly referred to as the sigma--and determine its mass and width within small uncertainties. Our derivation does not involve models or parametrizations but relies on a straightforward calculation based on the Roy equation for the isoscalar S wave.
We analyze the Roy equations for the lowest partial waves of elastic ππ scattering. In the first part of the paper, we review the mathematical properties of these equations as well as their phenomenological applications. In particular, the experimental situation concerning the contributions from intermediate energies and the evaluation of the driving terms are discussed in detail. We then demonstrate that the two S-wave scattering lengths a 0 0 and a 2 0 are the essential parameters in the low energy region: Once these are known, the available experimental information determines the behaviour near threshold to within remarkably small uncertainties. An explicit numerical representation for the energy dependence of the S-and P -waves is given and it is shown that the threshold parameters of the Dand F -waves are also fixed very sharply in terms of a 0 0 and a 2 0 . In agreement with earlier work, which is reviewed in some detail, we find that the Roy equations admit physically acceptable solutions only within a band of the (a 0 0 ,a 2 0 ) plane. We show that the data on the reactions e + e − → π π and τ → π π ν reduce the width of this band quite significantly. Furthermore, we discuss the relevance of the decay K → π π e ν in restricting the allowed range of a 0 0 , preparing the grounds for an analysis of the forthcoming precision data on this decay and on pionic atoms. We expect these to reduce the uncertainties in the two basic low energy parameters very substantially, so that a meaningful test of the chiral perturbation theory predictions will become possible.
We review lattice results related to pion, kaon, - and -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor , arising in semileptonic transition at zero momentum transfer, as well as the decay-constant ratio of decay constants and its consequences for the CKM matrix elements and . Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of and Chiral Perturbation Theory and review the determination of the parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on - and -meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant .
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor , arising in the semileptonic transition at zero momentum transfer, as well as the decay constant ratio and its consequences for the CKM matrix elements and . Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of and Chiral Perturbation Theory. We review the determination of the parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for and (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.