Anthracyclines are chemotherapeutic drugs that are widely used in the treatment of cancers such as lung and ovarian cancers. The simultaneous determination of the anthracyclines, daunorubicin, doxorubicin and epirubicin, was achieved using CE coupled to LIF, with an excitation and emission wavelength of 488 and 560 nm, respectively. Using a borate buffer (105 mM, pH 9.0) and 30% MeOH, a stable and reproducible separation of the three anthracyclines was obtained. The method developed was shown to be capable of monitoring the therapeutic concentrations (50-50 000 ng/mL) of anthracyclines. LODs of 10 ng/mL, calculated at an S/N = 3, were achieved. Using the CE method developed, the in vitro protein binding to plasma was measured by ultrafiltration, and from this investigation the estimated protein binding was determined to be in the range of 77-94%.
Microdialysis is an important sampling technique in many pharmacokinetics and pharmacological studies. Applying microdialysis to lipophilic analytes can be difficult as low extraction efficiencies are generally obtained with these types of analytes. In this investigation, the effects of applying microdialysis to the lipophilic compound, doxorubicin are discussed. Using varying concentrations of doxorubicin (DOX) from 1 to 20 μM, in vitro probe calibrations were performed by delivery, recovery and no-net flux. Any changes in the extraction efficiencies calculated were monitored through the addition of an internal standard, antipyrine. DOX was chosen as a representative lipophilic analyte because its red color could be visibly monitored on the probe. At higher concentrations the probe membrane became redder. For delivery experiments, the inlet of the probe was more highly colored than the outlet. The opposite was true for recovery experiments, in which the outlet was more highly colored than the inlet. It was observed that while antipyrine was well-behaved in these experiments, for DOX the extraction efficiency determined by recovery was not the same as the extraction efficiency determined by delivery (p < 0.005, 0.05). It was further observed that for DOX the extraction efficiency determined by a no net flux experiment was in good agreement with the value determined by delivery and not that determined by recovery. However, the only point in which no DOX was present in the perfusate was not on the no-net flux line. In addition, the transport of DOX across the microdialysis membrane was considerably slower than the transport of antipyrine.
In this work, a CZE method with indirect UV detection was developed for the simultaneous determination of the inorganic and acidic anions, chloride, sulfate, nitrate, fluoride, formate, phosphate, diethylphosphate, methyl sulfonate, cyanoacetate, and methacrylate present in cyanoacrylate adhesives. Chromate was employed as the probe ion, and the EOF was reversed by incorporating CTAB into BGE. Detection limits of 0.7-4.6 microg/mL were obtained for all the anions studied. The CE method developed is a significant improvement on traditionally used chromatographic methods such as ion chromatography, as it resulted in shorter analysis times with enhanced separation efficiencies. This method was successfully employed for the analysis of inorganic and acidic anions in cyanoacrylate adhesive samples.
In this study, the trace acid profile of cyanoacrylate adhesives was studied using capillary electrophoresis. Liquid-liquid extraction was employed as the sample preparation step prior to separation by capillary electrophoresis. The solubility of the adhesives was investigated using various organic solvents, e.g. hexane and dichloromethane, and chloroform was determined to be the optimum solvent as it enabled the full dissolution of the adhesive. A comprehensive stability study was performed over a three-year period and results indicate that the adhesives were stable for two years after which their stability and performance degraded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.