The herpes simplex virus type 1 (HSV-1) genome is contained in a capsid wrapped by a complex tegument layer and an external envelope. The poorly defined tegument plays a critical role throughout the viral life cycle, including delivery of capsids to the nucleus, viral gene expression, capsid egress, and acquisition of the viral envelope. Current data suggest tegumentation is a dynamic and sequential process that starts in the nucleus and continues in the cytoplasm. Over two dozen proteins are assumed to be or are known to ultimately be added to virions as tegument, but its precise composition is currently unknown. Moreover, a comprehensive analysis of all proteins found in HSV-1 virions is still lacking. To better understand the implication of the tegument and host proteins incorporated into the virions, highly purified mature extracellular viruses were analyzed by mass spectrometry. Herpes simplex virus type 1 (HSV-1) is a multilayered particle composed of a DNA core surrounded by a capsid, a tegument, and finally an envelope. The tegument consists of several proteins that are critical for the virus. For instance, upon the virus' entry into the cell, the tegument likely directs the virus to the nucleus (20, 33, 52, 90). There, the U L 36 tegument protein anchors the capsid to the nuclear pore to enable viral DNA transfer into the nucleus (90). Three other teguments, namely, ICP0, ICP4, and U L 48 (VP16), then play an essential role in initiating viral transcription (24). Meanwhile, the U L 41 (VHS) tegument specifically degrades some mRNAs to the benefit of the virus (93, 94). During egress, passage of the newly assembled capsids across the two nuclear membranes relies on the U L 31 (tegument)/U L 34 (transmembrane protein) complex, as well as the U S 3 tegument (46,81). Interestingly, despite the involvement of all three proteins in nuclear viral egress, only U S 3 is found in mature virions (81).
Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment regulates EGFR signaling in tumor cells. In mammary tumor cells deficient for Golgi β1,6N-acetylglucosaminyltransferase V (Mgat5), a reduction in EGFR binding to the galectin lattice allows an increased association with stable caveolin-1 cell surface microdomains that suppresses EGFR signaling. Depletion of caveolin-1 enhances EGFR diffusion, responsiveness to EGF, and relieves Mgat5 deficiency–imposed restrictions on tumor cell growth. In Mgat5+/+ tumor cells, EGFR association with the galectin lattice reduces first-order EGFR diffusion rates and promotes receptor interaction with the actin cytoskeleton. Importantly, EGFR association with the lattice opposes sequestration by caveolin-1, overriding its negative regulation of EGFR diffusion and signaling. Therefore, caveolin-1 is a conditional tumor suppressor whose loss is advantageous when β1,6GlcNAc-branched N-glycans are below a threshold for optimal galectin lattice formation.
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl--cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl--cyclodextrinsensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras-and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl--cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-Rmediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolaemediated endocytosis of AMF-R to the endoplasmic reticulum.
Transfection of Mv1Lu mink lung type II alveolar cells with 1-6-N-acetylglucosaminyl transferase V is associated with the expression of large lysosomal vacuoles, which are immunofluorescently labeled for the lysosomal glycoprotein lysosomal-associated membrane protein-2 and the 1-6-branched N-glycan-specific lectin phaseolis vulgaris leucoagglutinin. By electron microscopy, the vacuoles present the morphology of multilamellar bodies (MLBs). Treatment of the cells with the lysosomal protease inhibitor leupeptin results in the progressive transformation of the MLBs into electron-dense autophagic vacuoles and eventual disappearance of MLBs after 4 d of treatment. Heterologous structures containing both membrane lamellae and peripheral electron-dense regions appear 15 h after leupeptin addition and are indicative of ongoing lysosome-MLB fusion. Leupeptin washout is associated with the formation after 24 and 48 h of single or multiple foci of lamellae within the autophagic vacuoles, which give rise to MLBs after 72 h. Treatment with 3-methyladenine, an inhibitor of autophagic sequestration, results in the significantly reduced expression of multilamellar bodies and the accumulation of inclusion bodies resembling nascent or immature autophagic vacuoles. Scrape-loaded cytoplasmic FITC-dextran is incorporated into lysosomal-associated membrane protein-2-positive MLBs, and this process is inhibited by 3-methyladenine, demonstrating that active autophagy is involved in MLB formation. Our results indicate that selective resistance to lysosomal degradation within the autophagic vacuole results in the formation of a microenvironment propicious for the formation of membrane lamella. INTRODUCTIONMultilamellar bodies (MLBs) are membrane-bound cellular organelles, which vary in size from 100-2400 nm, are composed of concentric membrane layers, and frequently exhibit an electron-dense core. MLBs are found in numerous cell types where they function in lipid storage and secretion (Schmitz and Mü ller, 1991). In lung type II alveolar cells, MLBs function as secretory granules whose exocytosis results in the deposition of the tubular myelin forms of surfactant on the surface of the alveolae (Hatasa and Nakamura, 1965;Ryan et al., 1975;Williams, 1977). The surfactant film over the alveolar epithelium regulates the surface tension at the air-cell interface and protects the alveola from collapse during respiration (Haagman and van Golde, 1991).Although the secretory function of MLBs in type II alveolar cells is well established, the precise mechanism of MLB biogenesis remains unclear. Autoradiographic studies of murine type II alveolar cells of mouse lungs showed that although phospholipids labeled with [ 3 H]choline are delivered directly from the Golgi to the MLB, proteins metabolically labeled with [ 3 H]leucine are visualized within multivesicular bodies before delivery to MLBs (Chevalier and Collet, 1972). Surfactant proteins A, B, and C are delivered via multivesicular bodies to MLBs, and multivesicular bodies are proposed as th...
Association between the ER and mitochondria has long been observed, and the formation of close contacts between ER and mitochondria is necessary for the ER-mediated sequestration of cytosolic calcium by mitochondria. Autocrine motility factor receptor (AMF-R) is a marker for a smooth subdomain of the ER, shown here by confocal microscopy to be distinct from, yet closely associated with the calnexin- or calreticulin-labeled ER. By EM, smooth ER AMF-R tubules exhibit direct interactions with mitochondria, identifying them as a mitochondria-associated smooth ER subdomain. In digitonin-permeabilized MDCK cells, the addition of rat liver cytosol stimulates the dissociation of smooth ER and mitochondria under conditions of low calcium. Using BAPTA chelators of various affinities and CaEGTA buffers of defined free Ca2+ concentrations and quantitative confocal microscopy, we show that free calcium concentrations <100 nM favor dissociation, whereas those >1 μM favor close association between these two organelles. Therefore, we describe a cellular mechanism that facilitates the close association of this smooth ER subdomain and mitochondria when cytosolic free calcium rises above physiological levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.