In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis.
Purpose: We previously identified novel thiazole derivatives able to reduce histone acetylation and histone acetyltransferase (HAT) activity in yeast. Among these compounds, 3-methylcyclopentylidene-[4-(4 0 -chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) has been selected and used throughout this study.Experimental Design: The effect of CPTH6 on histone acetylation, cell viability and differentiation, cellcycle distribution, and apoptosis in a panel of acute myeloid leukemia and solid tumor cell lines has been evaluated.Results: Here, we showed that CPTH6 leads to an inhibition of Gcn5 and pCAF HAT activity. Moreover, it inhibits H3/H4 histones and a-tubulin acetylation of a panel of leukemia cell lines. Concentration-and time-dependent inhibition of cell viability, paralleled by accumulation of cells in the G 0 /G 1 phase and depletion from the S/G 2 M phases, was observed. The role of mitochondrial pathway on CPTH6-induced apoptosis was shown, being a decrease of mitochondrial membrane potential and the release of cytochrome c, from mitochondria to cytosol, induced by CPTH6. Also the involvement of Bcl-2 and Bcl-xL on CPTH6-induced apoptosis was found after overexpression of the two proteins in leukemia cells. Solid tumor cell lines from several origins were shown to be differently sensitive to CPTH6 treatment in terms of cell viability, and a correlation between the inhibitory efficacy on H3/H4 histones acetylation and cytotoxicity was found. Differentiating effect on leukemia and neuroblastoma cell lines was also induced by CPTH6.Conclusions: These results make CPTH6 a suitable tool for discovery of molecular targets of HAT and, potentially, for the development of new anticancer therapies, which warrants further investigations.
BackgroundThe role of the MYC oncogene in the apoptotic pathways is not fully understood. MYC has been reported to protect cells from apoptosis activation but also to sensitize cells to apoptotic stimuli. We have previously demonstrated that the down-regulation of Myc protein activates apoptosis in melanoma cells and increases the susceptibility of cells to various antitumoral treatments. Beyond the well-known role in the G1→S transition, MYC is also involved in the G2-M cell cycle phases regulation.Methodology/Principal FindingsIn this study we have investigated how MYC could influence cell survival signalling during G2 and M phases. We used the microtubules damaging agent paclitaxel (PTX), to arrest the cells in the M phase, in a p53 mutated melanoma cell line with modulated Myc level and activity. An overexpression of Myc protein is able to increase endoreduplication favoring the survival of cells exposed to antimitotic poisoning. The PTX-induced endoreduplication is associated in Myc overexpressing cells with a reduced expression of MAD2, essential component of the molecular core of the spindle assembly checkpoint (SAC), indicating an impairment of this checkpoint. In addition, for the first time we have localized Myc protein at the spindle poles (centrosomes) during pro-metaphase in different cell lines.ConclusionsThe presence of Myc at the poles during the prometaphase could be necessary for the Myc-mediated attenuation of the SAC and the subsequent induction of endoreduplication. In addition, our data strongly suggest that the use of taxane in antitumor therapeutic strategies should be rationally based on the molecular profile of the individual tumor by specifically analyzing Myc expression levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.