For many years our knowledge on hepatitis C virus (HCV) replication has been based on in vitro experiments or transfection studies. Recently, the first reliable system for studying viral replication in tissue culture cells was developed. Taking advantage of this system, we examined in detail the localization of viral nonstructural (NS) proteins in cells containing functional replication complexes. By fractionation experiments and immunomicroscopy, we observed that all NS proteins were associated with the endoplasmic reticulum (ER) membranes, confirming the hypothesis that the ER is the site of membrane-associated HCV RNA replication. Interestingly, NS3 and NS4A were preferentially localized in endoplasmic reticulum cisternae surrounding mitochondria, suggesting additional subcellular compartment-related functions for these viral proteins. Furthermore, the immunoelectron microscopy revealed the loss of the organization and other morphological alterations of the ER (convoluted cisternae and paracrystalline structures), resembling alterations observed in liver biopsies of HCV-infected individuals and in flavivirus-infected cells.
Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.