The possibility to discriminate between different emission sources and between natural and anthropogenic contributions is a key issue for planning efficient air pollution reduction and mitigation strategies. Moreover, the knowledge of the particulate matter (PM) chemical composition for the different size fractions is recognized as increasingly important, in particular with respect to health effects of exposed population. This study is focused on the characterization of PM10 and PM2.5 main sources located in the Civitavecchia harbor-industrial area (Central Italy), namely a large coal-fired power plant, a natural gas power plant, the harbor area, the vehicular traffic (due to both the local traffic and the highway crossing the area) and small industrial activities. The approach was based on PM10/PM2.5 samples monthly collected for one year and a further relative chemical characterization of organic and inorganic fractions. Wind-select sensors, allowing a selective PM10 and PM2.5 sampling downwind to specific emission sources, were used for the overall sampling. This methodology manages to explain specific emission patterns and to assess the concentration levels of the micro pollutants emitted by local sources and particularly toxic for health. A descriptive statistical analysis of data was performed, also verifying the occurrence of legislative threshold exceedances. Moreover, in order to highlight the contribution of specific sources, the differences in the measured micro pollutants concentrations between wind directions, PM size fractions and sampling sites have been investigated, as well as the seasonal trends of pollutants concentrations. These results allow to highlight that the applied methodology represents a valid support in source apportionment studies.
In recent years, studies on climate change have focused on reducing greenhouse gas emissions emitted by various civil and industrial processes. This study highlights the importance of characterizing the total deposition rates of airborne particles (bulk atmospheric deposition) in the surroundings of an industrial area along the north cost of the Lazio Region in Italy, to deepen knowledge about the potential impact of emissions from the coal-fired thermoelectric (CTE) power plant and other possible sources existing in the surrounding area. Four sampling sites were identified, and the monitoring plan was performed a yearlong with monthly collecting observation. The deposition samples were collected monthly and processed for determining organic (polychlorinated dibenzo-para-dioxins, PCDDs; polychlorinated dibenzofurans, PCDFs; dioxin-like polychlorinated biphenyls, DL-PCBs; polycyclic aromatic hydrocarbons, PAHs) and inorganic (metals) substances. The samples were collected monthly and sent for chemical characterization. In Europe and Italy, no reference values have been given for the deposition rates of chemicals, while some European countries have determined reference/guide values to which the authors will refer in this study. Therefore, the analytical results show that the deposition rates for PCDD/Fs and DL-PCBs are lower with respects guide values defined by Germany and Belgium; PAHs values are in line with those measured in other rural-type sites, while for metals the analytical results show a situation between rural and urban area. The approach used in this study can help to identify reference values for Italy in deposition rates, with the aim both to characterize the dynamic of pollution in area with multiple risk factors and to describe and protect human health from environmental exposures caused by the contamination of the food chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.