In this study, the performance of slider bearing with impacts of temperature and roughness of surface on 1D longitudinal and transverse roughness type is investigated using the Streamline Upwind Petrov–Galerkin (SUPG)-finite element method (FEM). It is considered that the roughness is stochastic and Gaussian in random distribution. It is also considered that viscosity and density depend upon temperature. The domain’s irregularity caused by surface roughness is changed into a regular domain for numerical computation purposes. To determine the capacity of load-carrying and pressure distribution, the continuity, momentum, modified Reynolds, and energy equations are decoupled and solved by the SUPG-FEM. It can be demonstrated that in the case of the longitudinal model of nonparallel slider bearing, the load-bearing bearing capacity and drag force of friction due to the case i of the combined effects are lower than those attributable to the influence of surface roughness. Nevertheless, the thermal case’s impact on the 1D transverse type capacity of load-carrying capability and drag friction force is below that of the combined and surface roughness impact instances. The reverse is true for parallel slider bearings, however, for a 1D transverse type, the load-carrying ability is not particularly impressive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.