Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α| 1.1 × 10 −8 quantifying a violation of time dilation, thus improving by a factor of around two the best known constraint obtained with Ives-Stilwell type experiments, and by two orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this paper will improve by orders of magnitude in the near future.
Detecting ocean-floor seismic activity is crucial for our understanding of the interior structure and dynamic behavior of Earth. However, 70% of the planet's surface is covered by water, and seismometer coverage is limited to a handful of permanent ocean bottom stations. We show that existing telecommunication optical fiber cables can detect seismic events when combined with state-of-the-art frequency metrology techniques by using the fiber itself as the sensing element. We detected earthquakes over terrestrial and submarine links with lengths ranging from 75 to 535 kilometers and a geographical distance from the earthquake's epicenter ranging from 25 to 18,500 kilometers. Implementing a global seismic network for real-time detection of underwater earthquakes requires applying the proposed technique to the existing extensive submarine optical fiber network.
An accuracy evaluation of the caesium fountain NPL-CsF2 as a primary frequency standard is reported. The device operates with a simple one-stage magneto-optical trap as the source of cold atoms. Both the uncertainty in and magnitude of the cold collision frequency shift are reduced by taking advantage of the dependence of the cross section on the effective collision energy in an expanding atomic cloud. The combined type B uncertainty (typically 4 × 10−16) is dominated by an estimate of the frequency shift due to the distributed cavity phase. When operated at single density, the short-term fractional frequency instability of NPL-CsF2 is 1.7 × 10−13 at 1 s and limited by the noise of the room temperature quartz-based local oscillator. During a typical frequency measurement campaign, the fountain is operated in an alternating mode at high and low density in order to measure and correct for a residual collision shift. This increases the effective fractional frequency instability to 5.4 × 10−13 at 1 s; consequently the averaging time required for the type A uncertainty level to match that of the type B is 20 days.
We demonstrate the transfer of an ultrastable microwave frequency by transmitting a 30-nm-wide optical frequency comb from a mode-locked laser over 86 km of installed optical fiber. The pulse train is returned to the transmitter via the same fiber for compensation of environmentally induced optical path length changes. The fractional transfer stability measured at the remote end reaches 4×10(-17) after 1600 s, corresponding to a timing jitter of 64 fs.
The design, operating parameters and the accuracy evaluation of the NPL Rb atomic fountain are described. The atomic fountain employs a double magneto-optical arrangement that allows a large number of 87Rb atoms to be trapped, a water-cooled temperature-stabilized interrogation region and a high quality factor interrogation cavity. From the uncertainties of measured and calculated systematic frequency shifts, the fractional frequency accuracy is estimated to be 3.7 × 10−16. The fractional frequency stability, limited predominantly by noise in the local oscillator, is measured to be 7 × 10−16 after one day of averaging. Based on the proposed quasi-continuous regime of operation of the fountain, the accuracy of the Rb standard of 5 × 10−17 reachable in two days of averaging is predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.