Piacentinu Ennese is a protected designation of origin (PDO) cheese produced in the surrounding area of Enna (Sicily, Italy), using raw ewe’s milk without the addition of any starter cultures. In the present study, the Lactobacillus population of Piacentinu Ennese PDO cheese was in vitro screened in order to select promising probiotic strains to be further used in humans. One hundred and sixty-nine lactic acid bacteria (LAB) were isolated from 90 days ripened cheeses and identified by Rep-PCR genomic fingerprinting, using the (GTG)5-primer, and by MALDI-TOF MS. One hundred and thirteen (113) isolates belonging to QPS-list species were characterized for both safety and functional properties. All tested isolates were considered safe because none showed either gelatinase, DNase, mucinase, or hemolytic activity. Tolerance to lysozyme, bile salts, and acidic conditions, along with ability to survive under simulated gastrointestinal digestion, were observed. In addition, based on antimicrobial activity against pathogens, cell surface characteristics, Caco-2 adhesion abilities, and anti-inflammatory potential, it was possible to confirm the strain-dependent functional aptitude, suggesting that Piacentinu Ennese PDO cheese may be considered a precious source of probiotic candidates.
Natural bioactive compounds may be used in obese patients because of their ability to impact on various key mechanisms involved in the complex pathophysiological mechanisms of such condition. The aim of this study was to investigate the effect of a Mangifera indica L. leaf extract (MLE) on adipogenic differentiation of murine preadipocyte cells. 3T3-L1 cells were treated during their differentiation with various concentrations of (Mangifera indica L.) leaves extract (MLE) (750, 380, 150, 75 and 35 μg) in order to assess their lipid content, adiponectin production, expression profile of genes involved in lipid metabolism, oxidative stress and inflammation. Our results showed that MLE was particularly enriched in polyphenols (46.30 ± 0.083 mg/g) and that pharmacological treatment of cells resulted in a significant increase of adiponectin levels and reduction of intracellular lipid content. Consistently with these results, MLE resulted in a significant decrease of the expression of genes involved in lipid metabolism (FAS, PPARG, DGAT1, DGAT2, and SCD-1). In conclusion, our results suggest that MLE may represent a possible pharmacological tool for obese or metabolic syndrome patients.
Central nervous system tumors are the most common pediatric solid tumors and account for 20–25% of all childhood malignancies. Several lines of evidence suggest that brain tumors show altered redox homeostasis that triggers the activation of various survival pathways, leading to disease progression and chemoresistance. Among these pathways, heme oxygenase-1 (HO-1) plays an important role. HO-1 catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. The biological effects of HO-1 in tumor cells have been shown to be cell-specific since, in some tumors, its upregulation promotes cell cycle arrest and cellular death, whereas, in other neoplasms, it is associated with tumor survival and progression. This review focuses on the role of HO-1 in central nervous system malignancies and the possibility of exploiting such a target to improve the outcome of well-established therapeutic regimens. Finally, several studies show that HO-1 overexpression is involved in the development and resistance of brain tumors to chemotherapy and radiotherapy, suggesting the use of HO-1 as an innovative therapeutic target to overcome drug resistance. The following keywords were used to search the literature related to this topic: nuclear factor erythroid 2 p45-related factor 2, heme oxygenase, neuroblastoma, medulloblastoma, meningioma, astrocytoma, oligodendroglioma, glioblastoma multiforme, and gliomas.
The progression of non-alcoholic fatty liver disease (NAFLD) and the development of hepatic fibrosis is caused by changes in redox balance, leading to an increase of reactive oxygen species (ROS) levels. NAFLD patients are at risk of progressing to non-alcoholic steatohepatitis (NASH), associated to cardiovascular diseases (CVD), coronary heart disease and stroke. Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. The present work was directed to determine whether use of an inhibitor of HO-1 activity affects lipid metabolism and fibrosis process in hepatic cells. Oil Red assay and mRNA analysis were used to evaluate the triglycerides content and the lipid metabolism pathway in HepG2 cells. ROS measurement, RT-PCR and Soluble collagen assay were used to assess the intracellular oxidant, the fibrosis pathway and the soluble collagen in LX2 cells. The activity of HO-1 was inhibited using Tin Mesoporphyrin IX (SnMP). Our study demonstrates that a non-functional HO system results in an increased lipid storage and collagen release in hepatocytes. Consequently, an increase of HO-1 levels may provide a therapeutic approach to address the metabolic alterations associated with NAFLD and its progression to NASH.
Particular features in the pulp of blood oranges are marked levels of anthocyanin, a class of polyphenolic compounds well known to exert numerous health-promoting actions on human wellbeing including anti-obesity effects. In this study, we investigated in vitro, the antioxidant and anti-adipogenic activities of Morosil®, a standardized extract of Moro blood oranges. During adipocyte differentiation, 3T3-L1 cells were treated with concentrations of extract containing 2.5, 5, 10, 25 μM of anthocyanins. After seven days of treatment and differentiation, we measured reactive oxygen species production, nonproteic thiol groups content, adipokine secretion and triglyceride accumulation together with mRNA expression of adipogenic transcription factors such as PPARγ, C/EBPα, SREBP-1c. Furthermore, both ACCα, FAS protein expression and citrate synthase activity were measured. Results show that Morosil® exerts antioxidant and antiadipogenic activities during adipocyte differentiation of 3T3-L1 pre-adipocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.