Periodic monitoring of biodiversity changes at a landscape scale constitutes a key issue for conservation managers. Earth observation (EO) data offer a potential solution, through direct or indirect mapping of species or habitats. Most national and international programs rely on the use of land cover (LC) and/or land use (LU) classification systems. Yet, these are not as clearly relatable to biodiversity in comparison to habitat classifications, and provide less scope for monitoring. While a conversion from LC/LU classification to habitat classification can be of great utility, differences in definitions and criteria have so far limited the establishment of a unified approach for such translation between these two classification systems.Focusing on five Mediterranean NATURA 2000 sites, this paper considers the scope for three of the most commonly used global LC/LU taxonomies-CORINE Land Cover, the Food and Agricultural Organisation (FAO) land cover classification system (LCCS) and the International Geosphere-Biosphere Programme to be translated to habitat taxonomies. Through both quantitative and expert knowledge based qualitative analysis of selected taxonomies, FAO-LCCS turns out to be the best candidate to cope with the complexity of habitat description and provides a framework for EO and in situ data integration for habitat mapping, reducing uncertainties and class overlaps and bridging the gap between LC/LU and habitats domains for 123Landscape Ecol (2013) 28:905-930 DOI 10.1007 landscape monitoring-a major issue for conservation. This study also highlights the need to modify the FAO-LCCS hierarchical class description process to permit the addition of attributes based on class-specific expert knowledge to select multi-temporal (seasonal) EO data and improve classification. An application of LC/LU to habitat mapping is provided for a coastal Natura 2000 site with high classification accuracy as a result.
Monitoring biodiversity at the level of habitats and landscape is becoming widespread in Europe and elsewhere as countries establish international and national habitat conservation policies and monitoring systems. Earth Observation (EO) data offers a potential solution to long-term biodiversity monitoring through direct mapping of habitats or by integrating Land Cover/Use (LC/LU) maps with contextual spatial information and in situ data. Therefore, it appears necessary to develop an automatic/semi-automatic translation framework of LC/ LU classes to habitat classes, but also challenging due to discrepancies in domain definitions. In the context of the FP7 BIO_SOS (www.biosos.eu) project, the authors demonstrated the feasibility of the Food and Agricultural Organization Land Cover Classification System (LCCS) taxonomy to habitat class translation. They also developed a framework to automatically translate LCCS classes into the recently proposed General Habitat Categories classification system, able to provide an exhaustive typology of habitat types, ranging from natural ecosystems to urban areas around the globe. However discrepancies in terminology, plant height criteria and basic principles between the two mapping domains inducing a number of one-to-many and many-to-many relations were identified, revealing the need of additional ecological expert knowledge to resolve the ambiguities. This paper illustrates how class phenology, class topological arrangement in the landscape, class spectral signature from multi-temporal Very High spatial Resolution (VHR) satellite imagery and plant height
Summary1. Long-term habitat mapping and change detection are essential for the management of coastal wetlands as well as for evaluating the impact of conservation policies. Earth observation (EO) data and techniques are a valuable resource for long-term habitat mapping. Although the use of EO data is well developed for the automatic production of land cover (LC) maps, this is not the same for habitat maps, which are highly related to biodiversity. 2. In a previous paper, we used the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) environmental attributes (e.g. water quality, lithology, soil surface aspect) for LC-to-habitat class translation. However, these environmental attributes are often not openly available, not updated or are missing. 3. This paper offers an alternative, knowledge-based solution to automatic habitat mapping. When only expert rules and EO data are used, the final overall map accuracy, which is obtained by comparing reference ground truth patches to the ones depicted in the output map, is lower (75Á1%) than the accuracy obtained using environmental attributes alone (97Á0%). Some ambiguities that still remain in habitat discrimination are resolved by integrating the use of LCCS environmental attributes (if available) and expert rules. 4. In this paper, we use very high-resolution (VHR) satellite data and LIDAR data. LC classes are labelled according to the LCCS taxonomy, which offers a framework to integrate EO data with in situ and ancillary data. Output habitat classes are labelled according to the European Habitats Directive (92/43 EEC Directive) Annex I habitat types and Eunis habitat classification. Two Natura 2000 coastal wetland sites in southern Italy are considered. 5. Synthesis and applications. In this paper, we study the exploitation of ecological rules on vegetation pattern, plant phenology and habitat geometric properties for automatic translation of land cover (LC) maps to habitat maps in coastal wetlands. The methodology is useful for relatively inaccessible sites (e.g. wetlands) as it does not require in-field campaigns (generally costly) but only the elicitation of ecological expert rules. This can support site (e.g. Natura 2000) managers in long-term automatic habitat mapping. Habitat changes can be automatically detected by comparing map pairs, and trends can be quantified. This is particularly useful to satisfy the commitments of the European Habitats Directive (92/43/EEC), which requires Member States to take measures to maintain as, or restore to, favourable conservation status those natural habitat types and species of community interest that are listed in the Annexes to the Directive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.