Recently described biochemical and structural aspects of fucose-binding lectins from the European eel (Anguilla anguilla) and striped bass (Morone saxatilis) led to the identification of a novel lectin family ("F-type" lectins) characterized by a unique sequence motif and a characteristic structural fold. The F-type fold is shared not only with other members of this lectin family, but also with apparently unrelated proteins ranging from prokaryotes to vertebrates. Here we describe the purification, biochemical and molecular properties, and the opsonic activity of an F-type lectin (DlFBL) isolated from sea bass (Dicentrarchus labrax) serum. DlFBL exhibits two tandemly arranged carbohydrate-recognition domains that display the F-type sequence motif. In situ hybridization and immunohistochemical analysis revealed that DlFBL is specifically expressed and localized in hepatocytes and intestinal cells. Exposure of formalin-killed Escherichia coli to DlFBL enhanced their phagocytosis by D. labrax peritoneal macrophages relative to the unexposed controls, suggesting that DlFBL may function as an opsonin in plasma and intestinal mucus.
a b s t r a c tAlthough ascidians belong to a key group in chordate phylogenesis, amino acid sequences of Ciona intestinalis galectin-CRDs (CiLgals-a and -b) have been retained too divergent from vertebrate galectins. In the present paper, to contribute in disclosing Bi-CRD galectin evolution a novel attempt was carried out on CiLgals-a and -b CRDs phylogenetic analysis, and their involvement in ascidian inflammatory responses was shown. CiLgals resulted aligned with Bi-CRD galectins from vertebrates (Xenopus tropicalis, Gallus gallus, Mus musculus, Homo sapiens), cephalochordates (Branchiostoma floridae), echinoderms (Strongylocentrotus purpuratus) and a mono-CRD galectin from the ascidian Clavelina picta. The CiLgalsa N-terminal and C-terminal CRDs contain the signature sequence involved in carbohydrate binding, whereas the CiLgals-b C-CRD presents only three out of seven key aminoacids and it could not be suitable as sugar binding motif. Sequence similarity between clusters suggests an evolutionary model based on CRD domain gene duplication and sequence diversification. In particular CiLgals-b N-CRD and C-CRD were similar to each other and both grouped with the ascidian C. picta mono-CRD. Homology modeling process shows a CiLgals molecular structure superimposed to chicken and mouse galectins. The CiLgalsa and CiLgals-b genes were upregulated by LPS inoculation suggesting that they are inducible and expressed in the inflamed pharynx as revealed by real-time PCR analysis. Finally, in situ hybridization and immunohistochemical assays showed their localization in the inflamed tissues, while immunoblotting analysis indicated that CiLgals can form oligomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.