Climate change has created an environment where heat stress conditions are becoming more frequent as temperatures continue to raise in crop production areas around the world. This situation leads to decreased crop production due to plant sensitivity to heat stress. Reproductive success is critically dependent on plants’ ability to produce functional pollen grains, which are the most thermo-sensitive tissue. Flavonols are plant secondary metabolites known for their potent antioxidative activity, essential for male fertility in several species including tomato, and implicated in heat stress tolerance. Since flavonols are highly abundant in fruits of the tomato high pigment 2 (hp2) mutant, we tested the level of flavonols in pollen of this mutant, under the hypothesis that increased accumulation of flavonols would render pollen more tolerant to heat stress. Indeed, pollen from two alleles of the hp2 mutant was found to have flavonols levels increased by 18 and 280% compared with wild-type (WT) under moderate chronic heat stress (MCHS) conditions. This mutant produced on average 7.8-fold higher levels of viable pollen and displayed better germination competence under heat stress conditions. The percentage of fully seeded fruits and the number of seeds per fruit were maintained in the mutant under heat stress conditions while decreased in wild-type plants. Our results strongly suggest that increased concentrations of pollen flavonols enhance pollen thermotolerance and reproductive success under heat stress conditions. Thus, the high flavonols trait may help frame the model for improving crop resilience to heat stress.
Cucurbits represent an attractive model to explore the dynamics of fruit set, whose regulation is not fully understood, despite its importance for yield determination. A fertilized ovary must integrate signals from distant plant parts and 'decide' whether to set fruit, or remain inhibited and later senesce. Here, we set out to characterize first-fruit inhibition (FFI), that is, the inhibitory effect of the first fruit on subsequent development of younger ovaries during pollination-induced and parthenocarpic fruit set. After the first fertilized ovaries set fruit, younger fertilized ovaries remained in a temporary state of inhibition. Such ovaries preserved their size and green color, and if the older fruit were removed within a 1-week reversibility window, they set fruit. The FFI effect was documented in both fertilized and parthenocarpic ovaries. We compared the gene expression profiles of pollinated ovaries (committed to set fruit) with respect to those affected by FFI, and to non-pollinated ovaries (undergoing senescence). The three fates of the ovaries were characterized by wide changes in gene expression, with several specific transcripts being up- or down-regulated in response to pollination, and to the presence of inhibitory fruit. Metabolic profiling was undertaken and integrated with the transcriptomic data in order to characterize early physiological changes that occur in post-anthesis ovaries in parthenocarpic and non-parthenocarpic genotypes. The combined results are discussed with respect to current models of fruit set and specifically with regard to FFI. Moreover, these metabolome and transcriptome data provide a valuable resource for studying ovary development and fruit set.
Heat stress is a major environmental factor limiting crop productivity, thus presenting a food security challenge. Various approaches are taken in an effort to develop crop species with enhanced tolerance to heat stress conditions. Since epigenetic mechanisms were shown to play a regulatory role in mediating plants’ responses to their environment, we investigated the role of DNA methylation in response to heat stress in tomato (Solanum lycopersicum), an important vegetable crop. To meet this aim, we tested a DNA methylation-deficient tomato mutant, Slddm1b. In this short communication paper, we report phenotypic and transcriptomic preliminary findings, implying that the tomato ddm1b mutant is significantly less sensitive to heat stress compared with the background tomato line, M82. Under conditions of heat stress, this mutant line presented higher fruit set and seed set rates, as well as a higher survival rate at the seedling stage. On the transcriptional level, we observed differences in the expression of heat stress-related genes, suggesting an altered response of the ddm1b mutant to this stress. Following these preliminary results, further research would shed light on the specific genes that may contribute to the observed thermotolerance of ddm1b and their possibly altered DNA methylation status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.