The paper presents a research on machined surface roughness in face milling of aluminium alloy on a low power cutting machine. Based on the results of the central-composite plan of experiment with varying machining parameters (number of revolutions -spindle speed n, feed rate f and depth of cut a) and the roughness observed as output variable, two models have been developed: a regression model and a model based on the application of neural networks (NN model). The regression model (coefficient of determination of 0.965 or 0.952 adjusted) with insignificant lack of fit, provides a very good fit and can be used to predict roughness throughout the region of experimentation. Likewise, the model based on the application of neural networks approximates well the experimental results with the level of RMS (Root Mean Square) error in the phase of validation of 4.01 %.
Researches on machined surface roughness prediction in the face milling process of steel are presented in the paper. The data for modelling by the application of neural networks have been collected by the central composite design of experiment. Input variables are the parameters of machining (number of revolutions -cutting speed, feed and depth of cut) and the way of cooling, while the machined surface roughness is output variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.