A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April-August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes in April-July. We also analyse the UV and X-ray data acquired by the Swift and XMM-Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM-Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM-Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous HST-COS and IUE observations. Polynomial fits to the optical-X-ray SED show that the synchrotron peak likely lies in the 4-30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: i) orientation effects, ii) additional absorption, iii) multiple emission components, and iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.
Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019–2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly one month each, allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about three weeks; iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; iv) the optical long-term variability is characterized by a quasi-periodicity of about one month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.