Following an example of the world's great powers that developed the recycling industry after natural disasters and wars, the paper points to the possibility of using large quantities of construction and demolition waste, generated as a result of the recent floods in the BiH and Serbia. Based on the years of extensive experimental research, and the research conducted by eminent experts, an overview is provided of the most basic properties and application of recycled aggregate concrete. It has been shown that the application of coarse recycled concrete aggregate, as the component materials in the concrete mixtures, it is possible to produce structural concrete that can be satisfactory and even with high quality, which primarily depends on the characteristics of crushed demolished concrete.
The paper is related to the most significant aspects of numerical simulations in seismic analysis of tunnels, highlighting the soil-structure interaction phenomenon. The modelling of a problem and analysis of relevant influences may be completed by an application of software packages based on the finite element method. In order to define a reliable and efficient numerical model, that should simultaneously put together both the criteria of simplicity and realistic presentation of a physical problem, analyses should start from the most simple modelling techniques (theory of elasticity, replacing the soil medium with elastic springs, pseudo-static analysis), with the final goal to accomplish a more complex and realistic model (theory of elasto-plasticity, finite element method, full dynamic analysis).
This study analyzes the feasibility of valorizing industrial by-product, fly ash from a thermal power plant as a partial replacement of mineral filler-limestone for the production of self-compacting concrete (SCC). Three types of SCC mixtures with different portions of fly ash and the reference mixture with limestone were designed. The synthesized SCCs in the fresh state were examined for density, entrained air content, flowability (Slump flow, Slump flow time (t500), V-funnel time (tv)), passing ability (L-box), and segregation resistance, while hardened state testing included: density, compressive and flexural strength, static modulus of elasticity, water permeability, resistance against freezing in the presence of de-icing salt, and SEM analysis. Taking into account the obtained results it can be concluded that the addition of fly ash has a positive impact on the concrete properties and that the optimal content of fly ash is 20 % with respect to the total filler mass.
To optimize measurement procedures in laboratories, in terms of the balance between economics and risk, determination of the optimal calibration interval for measuring equipment has significant importance. This paper will show an approximate, but effective method for determination of initial calibration interval, regarding “ILAC” guidelines and original recommendations based on authors’ experience. The presented applied method is adapted for the equipment used in a laboratory for building materials and structural testing, and the results of its application are shown on the examples of several different instruments. Impact factors on calibration intervals are analyzed, and the basic recommendations for revision of the initial calibration intervals are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.