Objectives: Using moderate or ultra hypofractionation, which is also known as stereotactic body radiotherapy (SBRT) for treatment of localized prostate cancer patients has been increased. We present our preliminary results on the clinical utilization of magnetic resonance image-guided adaptive radiotherapy (MRgRT) for prostate cancer patients with the workflow, dosimetric parameters, toxicities and prostate specific antigen (PSA) response. Methods: Fifty prostate cancer patients treated with ultra-hypofractionation were included in the study. Treatment was performed with IMRT (step and shoot) technique and daily plan adaptation using MRgRT. The SBRT consisted of 36.25 Gy in five fractions with a 7.25 Gy fraction size. The time for workflow steps was documented. Patients were followed for the acute and late toxicities and PSA response. Results: The median follow-up for our cohort was 10 months (range between 3 and 29 months). The median age was 73.5 years (range between 50 and 84 years). MRgRT was well tolerated by all patients. Acute genitourinary (GU) toxicity rate of Grade one and Grade 2 was 28 and 36%, respectively. Only 6% of patients had acute Grade one gastrointestinal (GI) toxicity and there was no Grade ≥ 2 GI toxicity. To date, late Grade 1 GU toxicity was experienced by 24% of patients, 2% of patients experienced Grade 2 GU toxicity and 6% of patients reported Grade 2 GI toxicity. Due to the short follow-up, PSA nadir has not been reached yet in our cohort. Conclusion: In conclusion, MRgRT represents a new method for delivering SBRT with markerless soft tissue visualization, online adaptive planning and real-time tracking. Our study suggests that ultra-hypofractionation has an acceptable acute and very low late toxicity profile. Advances in knowledge: MRgRT represents a new markerless method for delivering SBRT for localized prostate cancer providing online adaptive planning and real-time tracking and acute and late toxicity profile is acceptable.
Improved soft-tissue visualization, afforded by magnetic resonance imaging integrated into a radiation therapy linear accelerator-based radiation delivery system (MR-linac) promises improved image-guidance. The availability of MR-imaging can facilitate on-table adaptive radiation planning and enable real-time intra-fraction imaging with beam gating without additional exposure to radiation. However, the novel use of magnetic resonance-guided radiation therapy (MRgRT) in the field of radiation oncology also potentially poses challenges for routine clinical implementation. Herein the early experience of a single institution, implementing the first MRgRT system in the country is reported. We aim to describe the workflow and to characterize the clinical utility and feasibility of routine use of an MR-linac system.
Purpose
We aimed to present our initial clinical experience on the implementation of a stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of liver metastases in oligometastatic disease.
Materials and Methods
Twenty-one patients (24 lesions) with liver metastasis treated with SMART were included in this retrospective study. Step-and-shoot intensity-modulated radiotherapy technique was used with daily plan adaptation. During delivery, real-time imaging was used by acquiring planar magnetic resonance images in sagittal plane for monitoring and gating. Acute and late toxicities were recorded both during treatment and follow-up visits.
Results
The median follow-up time was 11.6 months (range, 2.2 to 24.6 months). The median delivered total dose was 50 Gy (range, 40 to 60 Gy); with a median fraction number of 5 (range, 3 to 8 fractions) and the median fraction dose was 10 Gy (range, 7.5 to 18 Gy). Ninety-three fractions (83.7%) among 111 fractions were re-optimized. No patients were lost to follow-up and all patients were alive except one at the time of analysis. All of the patients had either complete (80.9%) or partial (19.1%) response at irradiated sites. Estimated 1-year overall survival was 93.3%. Intrahepatic and extrahepatic progression-free survival was 89.7% and 73.5% at 1 year, respectively. There was no grade 3 or higher acute or late toxicities experienced during the treatment and follow-up course.
Conclusion
SMART represents a new, noninvasive and effective alternative to current ablative radiotherapy methods for treatment of liver metastases in oligometastatic disease with the advantages of better visualization of soft tissue, real-time tumor tracking and potentially reduced toxicity to organs at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.