A clioquinol (ICHQ)-containing Pluronic® F127 polymeric micelle system (ICHQ/Mic) was recently shown to be effective against Leishmania amazonensis infection in a murine model. In the present study, ICHQ/Mic was tested against L. infantum infection. BALB/c mice (n = 12 per group) were infected with L. infantum stationary promastigotes through subcutaneous injection and, 45 days after challenge, received saline or were treated via the subcutaneous route with empty micelles, ICHQ or ICHQ/Mic. In addition, animals were treated with miltefosine by the oral route, as a drug control. Half of the animals were euthanized 1 and 15 days after treatment, aiming to evaluate two endpoints after therapy, when parasitological and immunological parameters were investigated. Results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significantly higher anti-parasite IFN-γ, IL-12, GM-CSF, nitrite and IgG2a isotype antibody levels, which were associated with low IL-4 and IL-10 production. In addition, a higher frequency of IFN-γ and TNF-α-producing CD4+ and CD8+ T-cells was found in these animals. The parasite load was evaluated in distinct organs, and results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significant reductions in organic parasitism in the treated and infected mice. A comparison between the treatments suggested that ICHQ/Mic was the most effective in inducing a highly polarized Th1-type response, as well as reducing the parasite load in significant levels in the treated and infected animals. Data obtained 15 days after treatment suggested maintenance of the immunological and parasitological responses. In conclusion, ICHQ/Mic could be considered in future studies for the treatment of visceral leishmaniasis.
Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4 + and CD8 + T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.
Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.
In recent years, considerable attention has been given to identify new antileishmanial products derived from medicinal plants, although, to date, no new effective compound has been recently applied to treat leishmaniasis. In the present study, the antileishmanial activity of a water extract from Zingiber officinalis Roscoe (ginger) was investigated and a purified fraction, named F10, was identified as responsible by this biological activity. The chemical characterization performed for this fraction showed that it is mainly composed by flavonoids and saponins. The water extract and the F10 fraction presented IC50 values of 125.5 and 49.8 μg/mL, respectively. Their selectivity indexes (SI) were calculated and values were seven and 40 times higher, respectively, in relation to the value found for amphotericin B, which was used as a control. Additional studies were performed to evaluate the toxicity of these compounds in human red blood cells, besides of the production of nitrite, as an indicator of nitric oxide (NO), in treated and infected macrophages. The results showed that both F10 fraction and water extract were not toxic to human cells, and they were able to stimulate the nitrite production, with values of 13.6 and 5.4 μM, respectively, suggesting that their biological activity could be due to macrophages activation via NO production. In conclusion, the present study shows that a purified fraction from ginger could be evaluated in future works as a therapeutic alternative, on its own or in association with other drugs, to treat disease caused by L. amazonensis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.