The present study aims at comparing the performances of three Lactobacillus reuteri strains (DSM 20016, DSM 17938, and ATCC 53608) in producing 3-hydroxypropionic acid (3-HP) from glycerol and at exploring inhibition phenomena during this bioconversion. Differences were highlighted between the three strains in terms of 3-HP production yield, kinetics of substrate consumption, and metabolite production. With a maximal productivity in non-optimal conditions (free pH) around 2 g.L(-1).h(-1) of 3-HP and 4 g.L(-1).h(-1) of 3-hydroxypropionaldehyde (3-HPA) depending on the strain, this study confirmed the potential of L. reuteri for the biotechnological production of 3-HP. Moreover, the molar ratios of 3-HP to 1,3-propanediol (1,3-PDO) obtained for the three strains (comprised between 1.25 and 1.65) showed systematically a higher 3-HP production. From these results, the DSM 17938 strain appeared to be the most promising strain. The impact of glycerol bioconversion on the bacteria's physiological state (a decrease of around 40 % in DSM 17938 cells showing an enzymatic activity after 3 h) and survival (total loss of cultivability after 2 or 3 h depending on the strains) was revealed and discussed. The effect of each metabolite on L. reuteri DSM 17938 was further investigated, displaying a drastic inhibition caused by 3-HPA, while 3-HP induced lower impact and only at acidic pH.
BACKGROUND: Bioconversion is a promising route to produce bio-based building blocks such as 3-hydroxypropionic acid (3-HP). Reactive extraction can be used for 3-HP recovery, and ultimately integrated to the bioconversion process. To the best of our knowledge, there is no published experimental data about the reactive extraction of 3-HP. This work aimed to study the extraction of 3-HP using tri-n-octylamine and Aliquat 336 as extractants in n-decanol. Comparison was also made with its positional isomer, lactic acid. Finally, the extraction of 3-HP from model and real bioconversion broths was examined.
BACKGROUND: Reactive liquid-liquid extraction is a promising technique for the direct recovery of carboxylic acids from bioconversion media. This work focused on the optimization of 3-hydroxypropionic acid (3-HP) reactive extraction assisted by hollow-fiber membrane contactor (HFMC), using tri-n-octylamine (TOA) and Aliquat 336 as extractants in n-decanol, and on its practical application for the recovery of 3-HP obtained from glycerol bioconversion by Lactobacillus reuteri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.