Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 °C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle (~50% versus ~42%). The levelized cost of electricity (LCOE) of a 565 °C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 °C. The analysis suggests that ~8% reduction in LCOE can be expected by raising salt temperature to 650 °C. However, most of that benefit can be achieved by raising the temperature to only 600 °C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.
A prototype direct absorption central receiver, called the solid particle receiver (SPR), was built and evaluated on-sun at power levels up to 2.5 MWth at Sandia National Laboratories in Albuquerque, NM. The SPR consists of a 6 m tall cavity through which spherical sintered bauxite particles are dropped and directly heated with concentrated solar energy. In principle, the particles can be efficiently heated to a temperature in excess of 900°C, well beyond the stability limit of existing nitrate salt formulations. The heated particles may then be stored in a way analogous to nitrate salt systems, enabling a dispatchable thermal input to power or fuel production cycles. The focus of this current effort was to provide an experimental basis for the validation of computational models that have been created to support improved designs and further development of the solid particle receiver. In this paper, we present information on the design and construction of the solid particle receiver and discuss the development of a computational fluid dynamics model of the prototype. We also present experimental data and model comparisons for on-sun testing of the receiver over a range of input power levels from 1.58–2.51 MWth. Model validation is performed using a number of metrics including particle velocity, exit temperature, and receiver efficiency. In most cases, the difference between the model predictions and data is less than 10%.
This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project-what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next moltensalt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.
Evaluation of Molten Salt Power Tower Technology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.