In order to tackle the problem of part count reduction more effectively, an approach that combines the design for manufacture and assembly (DFMA) method with the theory of inventive problem solving (TRIZ) is presented in this paper. This new approach was developed by merging the common characteristics and connecting the complementary aspects of the two methods, which were then applied to the redesign of a satellite antenna.
PurposeThis paper aims to develop a deep characterization of PA‐Al2O3 composite for selective laser sintering (SLS). Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. An accurate knowledge of the parts' performances as a function of the building orientation, is fundamental to understand the manufacturing anisotropy. Particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics, on the basis of the knowledge developed by the authors on SLS of both metal and polymeric powders.Design/methodology/approachSpecimens have been built with different orientations in regard to powder deposition plane and laser path. Tension test is used to determine main mechanical characteristics of the material, both at room temperature and at 100°C. A particular attention is dedicated to the joining and failure micromechanisms ruling the macroscopic characteristics of the composite material by means of optical and scanning electron microscope (SEM) observations.FindingsThe sintered material shows an evident anisotropy in the growth direction (z‐axis), as well as it seems to be not sensitive to the sintering direction at room temperature (x, y, xy). At 100°C the effect of sintering direction becomes more evident and a different behaviour results considering x‐ and y‐direction, respectively. Accurate SEM characterization has been carried out to understand the effect of the manufacturing anisotropy on the mechanical performances, both in terms of additive construction and laser sintering strategy. The observation of the rupture surfaces showed that cracks originate from the external surface and propagate initially by the ductile failure of the polymeric matrix, up to the sudden fracture of the whole section.Originality/valuePrevious studies concerning polyamide charged parts confirm the importance of fabrication parameters and geometry on the final performances, due to anisotropic heat supply and transfer phenomena. The originality of the paper is in the investigation on both at room temperature and at 100°C. Moreover, a model is proposed where it is hypothesized that the layer‐by‐layer construction is only marginally responsible of the anisotropic behaviour of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.