Glucose transporter protein type 1 (GLUT1) is a major glucose transporter of the fertilized egg and preimplantation embryo. Haploinsufficiency for GLUT1 causes the GLUT1 deficiency syndrome in humans, however the embryo appears unaffected. Therefore, here we produced heterozygous GLUT1 knockout murine embryonic stem cells (GT1؉/؊) to study the role of GLUT1 deficiency in their growth, glucose metabolism, and survival in response to hypoxic stress. GT1(؊/؊) cells were determined to be nonviable. Both the GLUT1 and GLUT3 high-affinity, facilitative glucose transporters were expressed in GT1(؉/؉) and GT1(؉/؊) embryonic stem cells. GT1(؉/؊) demonstrated 49 ؎ 4% reduction of GLUT1 mRNA. This induced a posttranscriptional, GLUT1 compensatory response resulting in 24 ؎ 4% reduction of GLUT1 protein. GLUT3 was unchanged. GLUT8 and GLUT12 were also expressed and unchanged in GT1(؉/؊). Stimulation of glycolysis by azide inhibition of oxidative phosphorylation was impaired by 44% in GT1(؉/؊), with impaired up-regulation of GLUT1 protein. Hypoxia for up to 4 hours led to 201% more apoptosis in GT1(؉/؊) than in GT1(؉/؉) controls. Caspase-3 activity was 76% higher in GT1(؉/؊) versus GT1(؉/؉) at 2 hours. Heterozygous knockout of GLUT1 led to a partial GLUT1 compensatory response protecting nonstressed cells. However, inhibition of oxidative phosphorylation and hypoxia both exposed their increased susceptibility to these stresses.
The CD2-associated protein (CD2AP) rs9349407 polymorphism was first identified to be significantly associated with Alzheimer's disease (AD) in European ancestry by genome-wide association studies (GWAS). However, the following studies reported no association in Chinese, Japanese, African-American, Canadian, and European populations. We think that these negative results may have been caused by either relatively small sample sizes compared with those used for the previous GWAS in European ancestry or the genetic heterogeneity of the rs9349407 polymorphism in different populations. Here, we reevaluated this association using the relatively large-scale samples from 15 previous studies (N = 54,936; 23,777 cases and 31,159 controls) by searching the PubMed, AlzGene, and Google Scholar databases. Using an additive genetic model, we did not identify a significant heterogeneity among the 15 studies. Using meta-analysis, we observed a significant association between the rs9349407 polymorphism and AD with P = 8.78E-07, odds ratio (OR) = 1.08, 95% confidence interval (CI) 1.05-1.12. To our knowledge, this is the first meta-analysis to investigate the association between rs9349407 polymorphism and AD in East Asian, American, Canadian, and European populations. Our analysis further supports previous findings that the CD2AP rs9349407 polymorphism contributes to AD susceptibility. We believe that our findings will be very useful for future genetic studies on AD.
Nicotine exposure modifies the expression of catecholamine and opioid neurotransmitter systems involved in attenuation of hypoxic chemosensitivity. We used in situ hybridization histochemistry to determine the effect of prenatal and early postnatal nicotine exposure on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), preproenkephalin (PPE), and D2-dopamine receptor mRNA levels in the rat carotid body and petrosal ganglion during postnatal development. In the carotid body, nicotine increased TH mRNA expression in animals at 0 and 3 postnatal days (both, P < 0.05 vs. control) without affecting TH mRNA levels at 6 and 15 days. At 15 postnatal days, DbetaH mRNA levels were increased in the carotid body of nicotine-exposed animals. Dopamine D2-receptor mRNA levels in the carotid body increased with postnatal age but were unaffected by nicotine exposure. PPE was not expressed in the carotid body at any of the ages studied in control or treated animals. In the petrosal ganglion, nicotine increased the number of ganglion cells expressing TH mRNA in animals at 3 days (P < 0.01 vs. control). DbetaH mRNA expression was not induced nor was PPE mRNA expression increased in the petrosal ganglion in treated animals. Prenatal nicotine exposure upregulates mRNAs involved in the synthesis of two inhibitory neuromodulators, dopamine and norepinephrine, in peripheral arterial chemoreceptors, which may contribute to abnormalities in cardiorespiratory control observed in nicotine exposed animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.