Background/Objective: Topoisomerases type IIA (TOP2A) was identified to present with a high-expression pattern in cervical cancer. However, TOP2A role in the progression of cervical cancer remains unknown. Here, we aimed to explore the effect and reveal the underlying mechanism of TOP2A in the migration, invasion and epithelial-mesenchymal transition (EMT) of cervical cancer. Materials and Methods: The expression profiles of TOP2A in 20 paired cervical cancer tissues and the paracancerous normal tissues were detected by using Western blotting assay. Transwell chambers were used to test cell migration and invasion abilities. Cell morphology and the expressions of E-cadherin and N-cadherin were detected to assess cell EMT. LY294002 was used to inhibit the activation of PI3K/AKT signaling. Results: Compared with the paracancerous normal tissues, TOP2A was overexpressed in 85% (17/20) cervical cancer tissues. Repression of TOP2A expression in SiHa cells significantly weakened cell migration and invasion abilities, reduced cell numbers in shuttle shape and increased E-cadherin expression while decreased E-cadherin expression. To the opposite, overexpression of TOP2A in Hela cells induced opposite results. In addition, the expression of p-AKT was increased when TOP2A was overexpressed in Hela cells, and p-AKT expression was decreased when TOP2A was silenced in SiHa cells. Moreover, suppression of the PI3K/AKT signaling with LY294002 treatment apparently rescued TOP2A-mediated promotions in cell migration, invasion and EMT in Hela cells. Conclusion: This study reveals that TOP2A is abnormally overexpressed in cervical cancer tissues, and TOP2A overexpression leads to cell migration, invasion and EMT via activating PI3K/AKT signaling.
ObjectivesWe aimed to develop radiology-based models for the preoperative prediction of the initial treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma (HCC) since the integration of radiomics and deep learning (DL) has not been reported for TACE.MethodsThree hundred and ten intermediate-stage HCC patients who underwent TACE were recruited from three independent medical centers. Based on computed tomography (CT) images, recursive feature elimination (RFE) was used to select the most useful radiomics features. Five radiomics conventional machine learning (cML) models and a DL model were used for training and validation. Mutual correlations between each model were analyzed. The accuracies of integrating clinical variables, cML, and DL models were then evaluated.ResultsGood predictive accuracies were showed across the two cohorts in the five cML models, especially the random forest algorithm (AUC = 0.967 and 0.964, respectively). DL showed high accuracies in the training and validation cohorts (AUC = 0.981 and 0.972, respectively). Significant mutual correlations were revealed between tumor size and the five cML models and DL model (each P < 0.001). The highest accuracies were achieved by integrating DL and the random forest algorithm in the training and validation cohorts (AUC = 0.995 and 0.994, respectively).ConclusionThe radiomics cML models and DL model showed notable accuracy for predicting the initial response to TACE treatment. Moreover, the integrated model could serve as a novel and accurate method for prediction in intermediate-stage HCC.
Growing evidence has shown that aerobic glycolysis, as a hallmark of cancer cells, plays a crucial role in cervical cancer. The aim of the study is to uncover whether fructose-1,6-bisphosphatase 2 (FBP2) is involved in cervical cancer progression via the aerobic glycolysis pathway. FBP2 levels were determined by quantitative PCR (qPCR) and western blotting. Cell growth viability and apoptosis were tested by cell counting kit-8 (CCK-8) and flow cytometry assays. Immunoprecipitation assay was applied for the detection of the FBP2 effect on pyruvate kinase isozyme type M2 (PKM2) ubiquitination. FBP2 level was decreased in cervical cancer, which is closely linked to shorter overall survival. FBP2 decreased cell growth and aerobic glycolysis and increased cell apoptosis, as well as decreased PKM2 expression and increased its ubiquitination level. The above-mentioned roles of FBP2 were weakened followed by PKM2 overexpression. FBP2 inhibited cervical cancer cell growth via inhibiting aerobic glycolysis by inducing PKM2 ubiquitination. Anti-Cancer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.