Water electrolysis is a promising approach toward low-cost renewable fuels; however, the high overpotential and slow kinetics limit its applicability. Studies suggest that either dinuclear copper (Cu) centers or the use of borate buffer can lead to efficient catalysis. We previously demonstrated the ability of peptoidsN-substituted glycine oligomersto stabilize high-oxidation-state metal ions and to form self-assembled di-copper-peptoid complexes. Capitalizing on these features herein we report on a unique Cu-peptoid duplex, Cu2(BEE)2, that is a fast and stable homogeneous electrocatalyst for water oxidation in borate buffer at pH 9.35, with low overpotential and a high turnover frequency of 129 s–1 (peak current measurements) or 5503 s–1 (FOWA); both are the highest reported for Cu-based water electrocatalysts to date. BEE is a peptoid trimer having one 2,2′-bipyridine ligand and two ethanolic groups, easily synthesized on solid support. Cu2(BEE)2 was characterized by single-crystal X-ray diffraction and various spectroscopic and electrochemical techniques, demonstrating its ability to maintain stable in four cycles of controlled potential electrolysis, leading to a high overall turnover number of 51.4 in a total of 2 h. Interestingly, the catalytic activity of control complexes having only one ethanolic side chain is 2 orders of magnitude lower than that of Cu2(BEE)2. On the basis of this comparison and on mechanistic studies, we propose that the ethanolic side chains and the borate buffer have significant roles in the high stability and catalytic activity of Cu2(BEE)2; the −OH groups facilitate protons transfer, while the borate species enables oxygen transfer toward O–O bond formation.
A peptoid trimer incorporating terpyridine and ethanol forms an intermolecular cobalt(iii) complex, which performs as a soluble electrocatalyst for water oxidation with a minimal overpotential of 350 mV and a high turnover frequency of 108 s−1.
Incorporating a chiral sidechain at the N-terminal of peptoids facilitates regio-selective amide bond hydrolysis mediated by transition metal ion and/or acidic buffer as evident by x-ray crystallographic analysis, supported by...
Borate buffer was found to have both structural and functional roles within a low‐cost tri‐copper electrocatalyst for homogeneous water oxidation that exhibits a high turnover frequency of 310 s−1. The borate buffer was shown to facilitate the catalytic activity by both bridging the three Cu ions and participating in O−O bond formation. Phosphate and acetate buffers did not show such roles, making borate a unique player in this catalytic system.
Water oxidation (WO) is the first step in the water-splitting process aiming at the production of hydrogen as a green renewable fuel. To successfully perform WO, potent strategies for overcoming the high energetic barrier and slow kinetics of this reaction are urgently required. One such strategy is the use of molecular catalysis. Specifically, Cu-based catalysts have been highlighted over the last decade due to their stability and fast kinetics. Among them, Cu-peptoids, where peptoids are peptidomimetics akin to peptides and are N-substituted glycine oligomers, can act as stable and active catalysts for oxidation transformations including electrocatalytic WO. Previously, we suggested that a benzyl group incorporated as a side chain near the catalytic site within a Cu-peptoid electrocatalyst for WO has a structural role in the activity of the electrocatalyst in phosphate buffer (PBS). Herein, we aimed to test this hypothesis and understand how an incorporated structural element side chain affects WO. To this aim, we prepared a set of peptoid trimers each with a different structural element replacing the benzyl group by either naphthyl, cyclohexyl, benzyl, propyl chloride, or propyl side chains as well as a peptoid lacking a structural element. We studied the structure of their Cu complexes and tested these complexes as electrocatalysts for WO. We discovered that while all the peptoids self-assemble to form dinuclear Cu-peptoid complexes, the duplex that has no structural side chain, Cu2(BE)2, is structurally different from the others in the solid state. Moreover, Cu2(BE)2 remains dinuclear in a PBS at pH 11, while all the other duplexes are mononuclear in the PBS. Finally, though most of the complexes showed low electrocatalytic activity for WO, the dinuclear complex Cu2(BE)2 performed with the highest turnover frequency of 484 s−1. Nevertheless, this dinuclear complex slowly decomposes to the corresponding mononuclear complex as a more stable species during WO, while the other mononuclear complexes retain their structure in solution but display much slower kinetics (ca. 5 to 8 s−1) under the same conditions. Overall, our results demonstrate that bulkier side chains hamper the stability of dinuclear Cu-peptoids in a PBS, and hence, their efficiency as WO electrocatalysts is also hampered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.