The aim of this study was to evaluate the efficacy of autologous platelet-rich plasma (PRP) combined with erbium fractional laser therapy for facial acne or acne scars. PRP combined with erbium fractional laser therapy was used for the treatment of 22 patients, including 16 patients who suffered from facial acne scars and 6 patients who suffered from acne scars concomitant with acne. Whole blood (40 ml) was collected from each patient, and following differential centrifugation, PRP was harvested. After using an erbium fractional laser, we applied PRP to the entire face of every patient. Digital photos were taken before and after the treatment for evaluation by dermatologists and the patients rated the efficacy on a 5-point scale. The erythema was moderate or mild, while its total duration was <3 days; after receiving the treatment three times, 90.9% of the patients showed an improvement of >50%, and 91% of the patients were satisfied; no acne inflammation was observed after treatment. PRP combined with erbium fractional laser therapy is an effective and safe approach for treating acne scars or acne, with minimal side-effects, and it simultaneously enhanced the recovery of laser-damaged skin.
Burn wounds are associated with a series of risks, such as infection and pathologic scar tissue formation, which significantly delay wound healing and lead to complications. In this study, we successfully fabricated a dextran-hyaluronic acid (Dex-HA) hydrogel enriched with sanguinarine (SA) incorporated into gelatin microspheres (GMs), which had high porosity, good swelling ratio, enhanced NIH-3T3 fibroblast cell proliferation, and sustained SA release profile. The in vitro degradation results indicate that the SA/GMs/Dex-HA hydrogel can be degraded. The in vitro antibacterial tests showed that the SA/GMs/Dex-HA hydrogel can inhibit methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). We evaluated the wound-healing effects and antibacterial properties of SA/GMs/Dex-HA hydrogels in a rat full-thickness burn infection model. The hematoxylin-eosin (H&E) and Masson's trichrome staining results of the SA/GMs/Dex-HA hydrogel showed that it improved re-epithelialization and enhanced extracellular matrix remodeling, and immunohistochemistry results showed that the expression of TGF-β1 and TNF-α was decreased, while the TGF-β3 expression was increased. Our findings suggest that the SA/GMs/Dex-HA hydrogel provides a potential way for infected burn treatment with high-quality and efficient scar inhibition.
The treatment of chronic diabetic wounds remains complicated, despite new insight into the cellular and molecular basis of wound healing and cutaneous regeneration. A growing body of clinical trials has shown that platelet release has a notable effectiveness on refractory ulcer healing. However, patients with chronic diabetic ulcers usually have poor general health, and the large-volume blood absence required to produce autologous platelet-rich plasma often causes adverse effects. To overcome the limitation, the homologous platelet gel (PG) from healthy donor was used for the treatment of chronic diabetic lower extremity wound in the study. We show here that homologous derived platelets significantly enhanced EVC304 cell and HaCaT cell proliferation and homologous PG was capable of prompting cell migration. Twenty-one patients with refractory diabetic lower extremity ulcers, who had no response to conventional treatments, were treated in this study. Our data indicated that homologous PG was effective for the enhancement and acceleration of diabetic lower extremity wounds healing. We propose that homologous PG appeared to enhance vascularization and epithelialization, which might induce a quicker healing process and and encourage controlled studies in future.
Mannose-binding lectin (MBL), a plasma C-type lectin, plays an important role in innate immunity. However, the interaction, and the consequences of it, between MBL and the immune system remain ill defined. We have investigated the contributing mechanisms and effects of MBL on the proliferation of human monocytes. At lower concentrations (≤4 μg/ml) MBL was shown to partially enhance monocyte proliferation. By contrast, at higher concentrations (8–20 μg/ml) of MBL, cell proliferation was markedly attenuated. MBL-induced growth inhibition was associated with G0/G1 arrest, down-regulation of cyclin D1/D3, cyclin-dependent kinase (Cdk) 2/Cdk4 and up-regulation of the Cdk inhibitory protein Cip1/p21. Additionally, MBL induced apoptosis, and did so through caspase-3 activation and poly ADP-ribose polymerase (PARP) cleavage. Moreover, transforming growth factor (TGF)-β1 levels increased in the supernatants of MBL-stimulated monocyte cultures. We also found that MBL-dependent inhibition of monocyte proliferation could be reversed by the TGF-β receptor antagonist SB-431542, or by anti-TGF-β1 antibody, or by the mitogen-activated protein kinase (MAPK) inhibitors specific for p38 (SB203580), but not ERK (U0126) or JNK (SP600125). Thus, at high concentrations, MBL can affect the immune system by inhibiting monocyte proliferation, which suggests that MBL may exhibit anti-inflammatory effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.