Despite intense interest in realizing topological phases across a variety of electronic, photonic and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes -boundary localization and chirality -emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, a very experimentally realistic mechanical non-equilibrium (Floquet) Chern lattice driven by AC electromagnets. Through appropriate synchronization of the AC driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems are applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups. arXiv:1701.03385v2 [cond-mat.mes-hall]
Large-scale quantum devices provide insights beyond the reach of classical simulations. However, for a reliable and verifiable quantum simulation, the building blocks of the quantum device require exquisite benchmarking. This benchmarking of large-scale dynamical quantum systems represents a major challenge due to lack of efficient tools for their simulation. Here, we present a scalable algorithm based on neural networks for Hamiltonian tomography in out-of-equilibrium quantum systems. We illustrate our approach using a model for a forefront quantum simulation platform: ultracold atoms in optical lattices. Specifically, we show that our algorithm is able to reconstruct the Hamiltonian of an arbitrary sized bosonic ladder system using an accessible amount of experimental measurements. We are able to significantly increase the previously known parameter precision.
Topological properties of quantum systems are one of the most intriguing emerging phenomena in condensed matter physics. A crucial property of topological systems is the symmetry-protected robustness towards local noise. Experiments have demonstrated topological phases of matter in various quantum systems. However, using the robustness of such modes to stabilize quantum correlations is still a highly sought-after milestone. In this work, we put forward a concept of using topological modes to stabilize fully entangled quantum states, and we demonstrate the stability of the entanglement with respect to parameter fluctuations. Specifically, we see that entanglement remains stable against parameter fluctuations in the topologically non-trivial regime, while entanglement in the trivial regime is highly susceptible to local noise. We supplement our scheme with an experimentally realistic and detailed proposal based on coupled superconducting resonators and qubits. Our proposal sets a novel approach for generating long-lived quantum modes with robustness towards disorder in the circuit parameters via a bottom-up experimental approach relying on easy-to-engineer building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.