In this paper, we investigate two neural architecture for gender detection and speaker identification tasks by utilizing Mel-frequency cepstral coefficients (MFCC) features which do not cover the voice related characteristics. One of our goals is to compare different neural architectures, multi-layers perceptron (MLP) and, convolutional neural networks (CNNs) for both tasks with various settings and learn the gender/speaker-specific features automatically. The experimental results reveal that the models using z-score and Gramian matrix transformation obtain better results than the models only use max-min normalization of MFCC. In terms of training time, MLP requires large training epochs to converge than CNN. Other experimental results show that MLPs outperform CNNs for both tasks in terms of generalization errors.
We develop a language-independent, deep learning-based approach to the task of morphological disambiguation. Guided by the intuition that the correct analysis should be "most similar" to the context, we propose dense representations for morphological analyses and surface context and a simple yet effective way of combining the two to perform disambiguation. Our approach improves on the languagedependent state of the art for two agglutinative languages (Turkish and Kazakh) and can be potentially applied to other morphologically complex languages.
This article presents an approach for spellchecking and autocorrection using web data for morphologically complex languages (in the case of Kazakh language), which can be considered an end-to-end approach that does not require any manually annotated word–error pairs. A sizable web of noisy data is crawled and used as a base to infer the knowledge of misspellings with their correct forms. Using the extracted corpus, a sub-string error model with a context model for morphologically complex languages are trained separately, then these two models are integrated with a regularization parameter. A sub-string alignment model is applied to extract symmetric and non-symmetric patterns in two sequences of word–error pairs. The model calculates the probability for symmetric and non-symmetric patterns of a given misspelling and its candidates to obtain a suggestion list. Based on the proposed method, a Kazakh Spellchecking and Autocorrection system is developed, which we refer to as QazSpell. Several experiments are conducted to evaluate the proposed approach from different angles. The results show that the proposed approach achieves a good outcome when only using the error model, and the performance is boosted after integrating the context model. In addition, the developed system, QazSpell, outperforms the commercial analogs in terms of overall accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.