SummaryThe genes MYB11, MYB12 and MYB111 share significant structural similarity and form subgroup 7 of the Arabidopsis thaliana R2R3-MYB gene family. To determine the regulatory potential of these three transcription factors, we used a combination of genetic, functional genomics and metabolite analysis approaches. MYB11, MYB12 and MYB111 show a high degree of functional similarity and display very similar target gene specificity for several genes of flavonoid biosynthesis, including CHALCONE SYNTHASE, CHALCONE ISOMERASE, FLAVANONE 3-HYDROXYLASE and FLAVONOL SYNTHASE1. Seedlings of the triple mutant myb11 myb12 myb111, which genetically lack a complete subgroup of R2R3-MYB genes, do not form flavonols while the accumulation of anthocyanins is not affected. In developing seedlings, MYB11, MYB12 and MYB111 act in an additive manner due to their differential spatial activity; MYB12 controls flavonol biosynthesis mainly in the root, while MYB111 controls flavonol biosynthesis primarily in cotyledons. We identified and confirmed additional target genes of the R2R3-MYB subgroup 7 factors, including the UDP-glycosyltransferases UGT91A1 and UGT84A1, and we demonstrate that the accumulation of distinct and structurally identified flavonol glycosides in seedlings correlates with the expression domains of the different R2R3-MYB factors. Therefore, we refer to these genes as PFG1-3 for 'PRODUCTION OF FLAVONOL GLYCOSIDES'.
SummaryIn Arabidopsis thaliana, several MYB and basic helix-loop-helix (BHLH) proteins form ternary complexes with TTG1 (WD-Repeats) and regulate the transcription of genes involved in anthocyanin and proanthocyanidin (PA) biosynthesis. Similar MYB-BHLH-WDR (MBW) complexes control epidermal patterning and cell fates. A family of small MYB proteins (R3-MYB) has been shown to play an important role in the regulation of epidermal cell fates, acting as inhibitors of the MBW complexes. However, so far none of these small MYB proteins have been demonstrated to regulate flavonoid biosynthesis. The genetic and molecular analyses presented here demonstrated that Arabidopsis MYBL2, which encodes a R3-MYB-related protein, is involved in the regulation of flavonoid biosynthesis. The loss of MYBL2 activity in the seedlings of two independent T-DNA insertion mutants led to a dramatic increase in the accumulation of anthocyanin. In addition, overexpression of MYBL2 in seeds inhibited the biosynthesis of PAs. These changes in flavonoid content correlate well with the increased level of mRNA of several structural and regulatory anthocyanin biosynthesis genes. Interestingly, transient expression analyses in A. thaliana cells suggested that MYBL2 interacts with MBW complexes in planta and directly modulates the expression of flavonoid target genes. These results are fully consistent with the molecular interaction of MYBL2 with BHLH proteins observed in yeast. Finally, MYBL2 expression studies, including its inhibition by light-induced stress, allowed us to hypothesise a physiological role for MYBL2. Taken together, these results bring new insights into the transcriptional regulation of flavonoid biosynthesis and provide new clues and tools for further investigation of its developmental and environmental regulation.Keywords: flavonoid, transcription, network, MYB, bHLH, TTG1. IntroductionFlavonoids are secondary metabolites that fulfil important biological functions and provide useful metabolic and genetic models for plant research, including the analysis of transcriptional regulation of gene expression (Koes et al., 2005;Lepiniec et al., 2006;Peer and Murphy, 2007;Taylor and Grotewold, 2005;Winkel-Shirley, 2001). Flavonoids are involved in protection against various biotic and abiotic stresses, they play roles in the regulation of plant reproduction and development and act as signalling molecules with the biotic environment. Besides these physiological functions, there is a growing interest in these secondary metabolites due to their potential benefits for human health (Halliwell, 2007; Luceri et al., 2007); therefore, improving our understanding of the regulation of flavonoid biosynthesis is an important objective.Although structural genes can be efficiently targeted for crop improvement, the use of regulatory genes seems to be at least as promising (Bovy et al., 2007; Grotewold et al., 940 ª 2008 The Authors Journal compilation ª 2008 Blackwell Publishing LtdThe Plant Journal (2008Journal ( ) 55, 940-953 doi: 10.1111Journal...
T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20 000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ∼71 000 lines with predicted insertions covering 62.5% of the 27 206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.
Transformation by Agrobacterium tumefaciens, an important tool in modern plant research, involves the integration of T-DNA initially present on a plasmid in agrobacteria into the genome of plant cells. The process of attachment of the agrobacteria to plant cells and the transport of T-DNA into the cell and further to the nucleus has been well described. However, the exact mechanism of integration into the host's DNA is still unclear, although several models have been proposed. During confirmation of T-DNA insertion alleles from the GABI-Kat collection of Arabidopsis thaliana mutants, we have generated about 34,000 sequences from the junctions between inserted T-DNA and adjacent genome regions. Here, we describe the evaluation of this dataset with regard to existing models for T-DNA integration. The results suggest that integration into the plant genome is mainly mediated by the endogenous plant DNA repair machinery. The observed integration events showed characteristics highly similar to those of repair sites of double-strand breaks with respect to microhomology and deletion sizes. In addition, we describe unexpected integration events, such as large deletions and inversions at the integration site that are relevant for correct interpretation of results from T-DNA insertion mutants in reverse genetics experiments.
We present a comprehensive overview on flavonoid-related phenotypes of A. thaliana tt and tds mutants, provide tools for their characterisation, increase the number of available alleles and demonstrate that tds3 is allelic to tt12 and tds5 to aha10. Flavonoid biosynthesis is one of the best-studied secondary metabolite pathways in plants. In the model system Arabidopsis thaliana it leads to the synthesis of three phenolic compound classes: flavonol glycosides, anthocyanins and proanthocyanidins (PAs). PAs appear brown in their oxidised polymeric forms, and most A. thaliana mutants impaired in flavonoid accumulation were identified through screens for lack of this seed coat pigmentation. These mutants are referred to as transparent testa (tt) or tannin-deficient seed (tds). More than 20 mutants of these types have been published, probably representing most of the genes relevant for PA accumulation in A. thaliana. However, data about the genes involved in PA deposition or oxidation are still rather scarce. Also, for some of the known mutants it is unclear if they represent additional loci or if they are allelic to known genes. For the present study, we have performed a systematic phenotypic characterisation of almost all available tt and tds mutants and built a collection of mutants in the genetic background of the accession Columbia to minimise effects arising from ecotype variation. We have identified a novel tt6 allele from a forward genetic screen and demonstrated that tds3 is allelic to tt12 and tds5 to aha10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.