Based on restricted interferences mechanism in a 1x2 MMI beam splitter, we theoretically investigate and experimentally demonstrate an ultra-compact MMI-based demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. The device is fabricated on 340 nm SOI platform, with a footprint of 293x6 μm 2 . It exhibits extremely low insertion losses of 0.14 dB and 1.2 dB at the wavelengths of 1.55 μm and 2 μm, respectively, with contrasts of approximately 20 dB for both wavelengths, and a cross-talk of 18.83 dB.
We report charge-compensated modified uni-traveling-carrier photodiodes (MUTC-PDs) with high photocurrent and fast response, grown using liquid group-V precursor, in an AIXTRON MOCVD system. The liquid group-V precursors involve less toxicity with better decomposition characteristics. Device fabrication is completed with standard processing techniques with BCB passivation. DC and RF measurements are carried out using a single mode fiber at 1.55 μm. For a 24-μm-diameter device (with diode ideality factor of 1.34), the dark current is 32.5 nA and the 3-dB bandwidth is ≫20 GHz at a reverse bias of 5 V, which are comparable to the theoretical values. High photocurrent of over 150.0 mA from larger diameter (>60 μm) devices is obtained. The maximum DC responsivity at 1.55 μm wavelength is 0.51 A/W, without antireflection coating. These photodiodes play a key role in the progress of the future THz communication systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.