Accumulation of neurotoxic βamyloid (Aβ) is a major hallmark of Alzheimer's disease (AD)1. Formation of Aβ is catalyzed by γsecretase, a protease with numerous substrates2,3. Little is known about the molecular mechanisms that confer substrate specificity on this potentially promiscuous enzyme. Knowledge of the mechanisms underlying its selectivity is critical for the development of clinically effective γ-secretase inhibitors that can reduce Aβ formation without impairing cleavage of other γ-secretase substrates, especially Notch, which is essential for normal biological functions3,4. Here we report the discovery of a novel γ-secretase activating protein (gSAP), which dramatically and selectively increases Aβ production through a mechanism involving its interactions with both γsecretase and its substrate, the amyloid precursor protein C-terminal fragment (APP-CTF). gSAP does not interact with Notch nor does it affect its cleavage. Recombinant gSAP stimulates Aβ production in vitro. Reducing gSAP levels in cell lines decreases Aβ levels. Knockdown of gSAP in a mouse model of Alzheimers disease reduces levels of Aβ and plaque development. gSAP represents a new type of γ-secretase regulator that directs enzyme specificity by interacting with a specific substrate. We demonstrate that imatinib, an anti-cancer drug previously found to inhibit Aβ formation without affecting Notch cleavage5, achieves its Aβ-lowering effect by preventing gSAP interaction with the γ-secretase substrate, APP-CTF. Thus, gSAP can serve as an Aβ-lowering therapeutic target without affecting other key functions of γ-secretase.
BackgroundIn several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study.MethodsN9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA).ResultsEMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure.ConclusionsEMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that the JAK2-STAT3 pathway may not mediate this initial microglial activation but does promote pro-inflammatory responses in EMF-stimulated microglial cells. Thus, the JAK2-STAT3 pathway might be a therapeutic target for reducing pro-inflammatory responses in EMF-activated microglia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.