The anthracnose caused by Colletotrichum species is an important disease that primarily causes fruit rot in pepper. Eighty-eight strains representing seven species of Colletotrichum were obtained from rotten pepper fruits in Sichuan Province, China, and characterized according to morphology and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) sequence. Fifty-two strains were chosen for identification by phylogenetic analyses of multi-locus sequences, including the nuclear ribosomal internal transcribed spacer (ITS) region and the β-tubulin (TUB2), actin (ACT), calmodulin (CAL) and GAPDH genes. Based on the combined datasets, the 88 strains were identified as Colletotrichum gloeosporioides, C. siamense, C. fructicola, C. truncatum, C. scovillei, and C. brevisporum, and one new species was detected, described as Colletotrichum sichuanensis. Notably, C. siamense and C. scovillei were recorded for the first time as the causes of anthracnose in peppers in China. In addition, with the exception of C. truncatum, this is the first report of all of the other Colletotrichum species studied in pepper from Sichuan. The fungal species were all non-host-specific, as the isolates were able to infect not only Capsicum spp. but also Pyrus pyrifolia in pathogenicity tests. These findings suggest that the fungal species associated with anthracnose in pepper may inoculate other hosts as initial inoculum.
Screening a new biosorbent with low cost and high efficiency from a native plant material is a key to the adsorption of heavy metal ions from wastewater. In this study, the potential of Phytolacca americana L. as a biosorbent for Pb(II) removal from aqueous solutions was investigated. Experiments were performed to evaluate the effect of biosorbent dosage, pH, initial Pb(II) concentration and contact time on the Pb(II) removal. The results indicated that the hydroxyl, carboxyl and amine groups may take part in Pb(II) binding. HNO 3 -modified P. americana (HPAL) showed a significant higher uptake capacity compared to original P. americana (PAL) (p < 0.05). A dose of 20 g L À1 of biosorbents in solutions with an initial pH of 6.0, an initial Pb(II) concentration of 30 mg L À1 and a contact time of 120 min resulted in the maximum Pb(II) removal efficiency. The Freundlich isotherm gave a better fit than the Langmuir isotherm revealed that the biosorption was potentially multilayer. Further, the adsorption kinetics followed a pseudo second-order model, which implied that the biosorption was mainly a chemisorption process. The thermodynamic properties showed that the Pb(II) adsorption onto the P. americana biomass was feasible, spontaneous and exothermic in nature. Both physisorption and chemisorption were involved in the biosorption of Pb(II) onto the surface of P. americana biomass through electrostatic interaction and ion exchange. Additionally, desorption studies revealed promising regeneration potential of these biosorbents. The present study showed that P. americana biomass could be used
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.