Patterns of specialization and the structure of interactions between bats and ectoparasitic flies have been studied mostly on non-urban environments and at local scales. Thus, how anthropogenic disturbances influence species interaction and network structure in this system remains poorly understood. Here we investigated patterns of interaction between Phyllostomidae bats and ectoparasitic Streblidae flies, and variations in network specialization and structure across Cerrado patches within urbanized landscapes in Brazil and between local and regional scales. We found high similarity in the richness and composition of bat and fly species across communities, associated with low turnover of interactions between networks. The high specialization of bat-streblid interactions resulted in little connected and modular networks, with the emergence of modules containing subsets of species that interact exclusively or primarily with each other. Such similarities in species and interaction composition and network structure across communities and scales suggest that bat-fly interactions within Cerrado patches are little affected by the degree of human modification in the surrounding matrix. This remarkable consistency is likely promoted by specific behaviors, the tolerance of Phyllostomidae bats to surrounding urbanized landscapes as well as by the specificity of the streblid-bat interactions shaped over evolutionary time.
Background
Mosquito-borne diseases (e.g., transmitted by Aedes aegypti) affect almost 700 million people each year and result in the deaths of more than 1 million people annually.
Methods
We examined research undertaken during the period 1951–2020 on the effects of temperature and climate change on Ae. aegypti, and also considered research location and between-country collaborations.
Results
The frequency of publications on the effects of climate change on Ae. aegypti increased over the period examined, and this topic received more attention than the effects of temperature alone on this species. The USA, UK, Australia, Brazil, and Argentina were the dominant research hubs, while other countries fell behind with respect to number of scientific publications and/or collaborations. The occurrence of Ae. aegypti and number of related dengue cases in the latter are very high, and climate change scenarios predict changes in the range expansion and/or occurrence of this species in these countries.
Conclusions
We conclude that some of the countries at risk of expanding Ae. aegypti populations have poor research networks that need to be strengthened. A number of mechanisms can be considered for the improvement of international collaboration, representativity and diversity, such as research networks, internationalization programs, and programs that enhance representativity. These types of collaboration are considered important to expand the relevant knowledge of these countries and for the development of management strategies in response to climate change scenarios.
Graphical Abstract
Pressures from anthropogenic disturbances have triggered a wealth of studies focusing on the assessment and mitigation of the negative impacts of these disturbances on inter and intraspecific ecological interactions, including bats and bat flies in their roosts. The heterogeneity of research methods employed for these studies and the scientific imbalance between countries may constrain advances and the consolidation of the knowledge on this subject. We reviewed the literature regarding bat and bat-ectoparasite interactions in roosts assessing global research trends and patterns of author collaborative work to be able to identify key questions for future studies and potential initiatives to improve the knowledge on this subject. Current information available has mostly come from the Americas and is predominantly focused on the recognition and description of parasite-host interactions between bats and bat flies. Our findings suggest the value of increasing collaboration for future research, as several countries with largely diverse environments and high organismal richness are disconnected from the countries that produce the most publications in this area, and/or have low records of publications. These regions are in the Global South, mostly in South American and African countries. We suggest that more collaborative networks may increase scientific production in the area, and that investing in local research development and enhancing partnerships for publications may strengthen the field. These research programs and collaborations are key for the development of conservation strategies for bats and bat flies, for their roosts, and for understanding bat and bat-ectoparasite interactions.
Graphical abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s00436-022-07635-z.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.