Proteolytic processing of amyloid precursor protein (APP) through an endosomal/lysosomal pathway generates carboxy-terminal polypeptides that contain an intact beta-amyloid domain. Cleavage by as-yet unidentified proteases releases the beta-amyloid peptide in soluble form. In Alzheimer's disease, aggregated beta-amyloid is deposited in extracellular neuritic plaques. Although most of the molecular mechanisms involving beta-amyloid and APP in the aetiology of Alzheimer's disease are still unclear, changes in APP metabolism may be important in the pathogenesis of the disease. Here we show that transgenic mice expressing the amyloidogenic carboxy-terminal 104 amino acids of APP develop, with ageing, extracellular beta-amyloid immunoreactivity, increased gliosis and microglial reactivity, as well as cell loss in the CA1 region of the hippocampus. Adult transgenic mice demonstrate spatial-learning deficits in the Morris water maze and in maintenance of long-term potentiation (LTP). Our results indicate that alterations in the processing of APP may have considerable physiological effects on synaptic plasticity.
In vitro studies have pointed to the collapsin response mediator proteins (CRMPs) as key regulators of neurite outgrowth and axonal differentiation. CRMP3 is expressed mostly in the nervous system during development but remains at high levels in the hippocampus of adults. To explore CRMP3 function in vivo, we generated mice with targeted disruption of the CRMP3 gene. Immunohistochemistry and Golgi staining of CA1 showed abnormal dendrite and spine morphogenesis in the hippocampus of CRMP3-deficient mice. Apical dendrites displayed an increase in undulation and a reduction in length and branching points. Basal dendrites also exhibited a reduction in length with an alteration in soma stem distribution and an increased number of thick dendrites localized in stratum oriens (SO). Long-term potentiation (LTP) was impaired in this area. These data indicate an important role for CRMP3 in dendrite arborization, guide-posts navigation, and neuronal plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.