Ankyrin repeats are an amino-acid motif believed to function in protein recognition; they are present in tandem copies in diverse proteins in nearly all phyla 1 . Ankyrin repeats contain antiparallel a-helices that can stack to form a superhelical spiral 2 . Visual inspection of the extrapolated structure of 24 ankyrin-R repeats 2 indicates the possibility of spring-like behaviour of the putative superhelix. Moreover, stacks of 17-29 ankyrin repeats in the cytoplasmic domains of transient receptor potential (TRP) channels have been identified as candidates for a spring that gates mechanoreceptors in hair cells as well as in Drosophila bristles 3-5 . Here we report that tandem ankyrin repeats exhibit tertiary-structure-based elasticity and behave as a linear and fully reversible spring in single-molecule measurements by atomic force microscopy. We also observe an unexpected ability of unfolded repeats to generate force during refolding, and report the first direct measurement of the refolding force of a protein domain. Thus, we show that one of the most common aminoacid motifs has spring properties that could be important in mechanotransduction and in the design of nanodevices.The atomic structure of 12 ankyrin-R repeats suggests that ankyrin stacks composed of n $ 24 repeats should form a full superhelical turn with putative spring properties 2,3 . We used an atomic force microscope (AFM) to identify individual stacks of 24 ankyrin-B repeats ( Supplementary Fig. S2) and found that they do indeed have a hook-like shape 2 with the molecules' end-to-end distance closely matching the ,12 nm determined for the extrapolated structure 2 (Fig. 1a). Thus, the AFM images strongly suggest that the engineered protein, bearing at its terminus a glutathione S-transferase (GST) module, is correctly folded and does not aggregate. These conclusions are further supported by circular dichroism and hydrodynamic measurements (Supplementary Table 1 and Supplementary Fig. S1).For elasticity measurements, heptahistidine-tagged polypeptides containing 24 ankyrin-B repeats with or without GST, or 12 repeats with GST, were immobilized on a glass surface bearing the metal chelate N-nitrilotriacetic acid (NTA) 6,7 (Fig. 1a). Molecules were stretched vertically, in solution, by the AFM cantilever, and their length and tension were measured with subnanometre and ,10 pN precision [8][9][10] . Most trials revealed complex force-extension profiles with irregularly spaced force peaks typical of multiple molecules ( Supplementary Fig. S4a). However, ,5% of the force-extension curves had simple and consistent features that, we argue, represent LETTERSFigure 1 | Atomic force microscopy measurements reveal the linear elasticity of ankyrin-B repeats. a, The extrapolated structure of 24 ankyrin-R repeats 2 and a diagram of the elasticity measurement on a His-tagged ankyrin fragment bound to NTA (red handles) and stretched with the AFM cantilever. b-e, Force-extension curves of individual ankyrins: 24 repeats with GST (b-d); 24 repeats with no GST (e)....
Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations of the stretching process to unravel the mechanism of forced conformational transitions in 1,6 linked polysaccharides. In contrast to most sugars, 1,6 linked polysaccharides have an extra bond in their inter-residue linkage, C5-C6, around which restricted rotations occur and this additional degree of freedom increases the mechanical complexity of these polymers. By comparing the computational results with the atomic force microscopy data we determine that forced rotations around the C5-C6 bond have a significant and different impact on the elasticity of alpha- and beta-linked polysaccharides. Beta-linkages of a polysaccharide pustulan force the rotation around the C5-C6 bonds and produce a Hookean-like elasticity but do not affect the conformation of the pyranose rings. However, alpha-linkages of dextran induce compound conformational transitions that include simultaneous rotations around the C5-C6 bonds and chair-boat transitions of the pyranose rings. These previously not-recognized transitions are responsible for the characteristic plateau in the force-extension relationship of dextran.
Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3’ to 5’ direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of ATP hydrolysis as in conventional helicases. Single-molecule fluorescence analysis revealed that instead of unwinding RNA in single base pair steps, Rrp44 accumulates the energy released by multiple single nucleotide step hydrolysis-reactions until about four base pairs are unwound in a burst. Kinetic analyses showed that RNA unwinding, not cleavage or strand release, determines the overall RNA degradation rate, and that the unwinding step size is determined by the nonlinear elasticity of the Rrp44/RNA complex, but not by duplex stability.
λ exonuclease degrades one strand of duplex DNA in the 5’-3’ direction to generate a 3’ overhang required for recombination. Its ability to hydrolyze thousands of nucleotides processively is attributed to its ring structure and most studies have focused on the processive phase. Here, we use single molecule FRET to reveal three phases of λ exonuclease reactions: initiation, distributive and processive phases. The distributive phase occurs at early reactions where the 3’ overhang is too short for a stable engagement with the enzyme. A mismatched base is digested five times slower than a Watson-Crick paired base and concatenating multiple mismatches has a cooperatively negative effect, highlighting the crucial role of basepairing in aligning the 5’ end toward the active site. The rate-limiting step during processive degradation appears to be the post-cleavage melting of the terminal base pair. We also found that an escape from a known pausing sequence requires enzyme backtracking.
Self-assembled polymers whose main chains are defined by reversible DNA base pairing form bridges between the tip of an atomic force microscope and substrate. The forces associated with the rupture of these assemblies are independent of polymer bridge length, and they resemble those expected for the isolated associations defining the polymer bridges. The assembly is reversible and is inhibited by a competitive, nonpolymerizing oligonucleotide. Noncomplementary polymer brush layers do not bridge, and therefore, the forces result from specific molecular recognition events. The length distribution of the bridges differs greatly from that of the polymers in solution, and thus the bridging is responsive to the spatial constraints of the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.