In Al-Mg alloys with Mg content 0 ≤ XMg ≤ 6 wt. %, the effects of XMg on dissolved hydrogen content ([H]) and melt quality were investigated. [H] was measured using the Closed-Loop Recirculation method, and the melt quality was quantified using the density index (DI), bifilm index (BI), and porosity measurement. [H] in the molten alloys increased with increasing XMg and melt temperature TMelt; these trends agree with theoretical calculations for hydrogen solubility. The tendency of melt quality vs XMg was similar in DI, BI, and porosity measurements, and the poorest melt quality was observed in the Al-4Mg alloy that had XMg = 4 wt. %, whereas the highest [H] was obtained in the Al-6Mg alloy melt that had XMg = 6 wt. % Mg. During thermogravimetric/differential thermal analysis, rapid oxidation occurred in the Al-4Mg alloy melt during the holding time between 45 and 60 min at 800 °C., i.e., just before the molten metal was cast. The inferior melt quality of Al-4Mg alloy may have been caused by high-temperature oxidation.
In this study, the optimal conditions of gas bubbling filtration (GBF) treatment for securing highly-clean molten Al-Si-Mg-Cu alloy were identified. The effects of GBF treatment time and stabilization time on the degree of molten metal cleanliness were examined by measuring melt quality parameters such as density index, bifilm index, porosity, and the amount of dissolved hydrogen [H]. A high melt quality was achieved when GBF treatment was performed on 10 kg melt for more than 10 min (i.e., 1 L gas/kg melt). However, as the stabilization holding time after GBF treatment increased to 10, 20, and 30 min, the melt quality degraded. GBF treatment for 30 min had a similar effect to treatment for 10 min, and the degree of deterioration of melt quality during the stabilization time was also similar. Considering the economics, 10 min GBF treatment and short holding time are required. Observations of the shape and volume of the largest pore suggested the cause of defect formation and confirmed that the volume of the largest pore can be used as an index of the melt quality.
With the rise in the demand for eco-friendly and electric vehicles, welding and heat treatment are becoming very important to meet the necessary weight reduction, complexity, and high functionality of die castings. Pore-free (PF) die casting is an effective process that enables heat treatment and welding due to low gas porosities. Indeed, this process affords castings of low gas porosity, similar to those attained by high-vacuum die casting. In this study, we compared the gas porosities of different castings fabricated by PF die casting using varied injected oxygen amounts. The castings were all subjected to T6 heat treatment and analyzed by computed tomography (CT) to compare their microstructure and mechanical properties before and after T6 heat treatment. The results revealed that with the increasing injected oxygen amount, the gas porosity of the specimens decreased while their mechanical properties increased. In particular, the gas porosity was the lowest at 1.26 L. Moreover, the 1.26 L specimen displayed the best tensile strength, yield strength, and elongation results. Finally, Weibull distribution analysis revealed that the tensile strength and elongation repeatability and reproducibility increased with increasing injected oxygen amount.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.