The subject of this paper is the visual object tracking in infrared (IR) videos. Our contribution is twofold. First, the performance behaviour of the state-of-the-art trackers is investigated via a comparative study using IR-visible band video conjugates, i.e., video pairs captured observing the same scene simultaneously, to identify the IR specific challenges. Second, we propose a novel ensemble based tracking method that is tuned to IR data. The proposed algorithm sequentially constructs and maintains a dynamical ensemble of simple correlators and produces tracking decisions by switching among the ensemble correlators depending on the target appearance in a computationally highly efficient manner. We empirically show that our algorithm significantly outperforms the state-of-the-art trackers in our extensive set of experiments with IR imagery.
This paper presents a novel infrared (IR) object tracking algorithm based on the co-difference matrix. Extraction of co-difference features is similar to the well known covariance method except that the vector product operator is redefined in a multiplication-free manner. The new operator yields a computationally efficient implementation for real time object tracking applications. Experiments on an extensive set of IR image sequences indicate that the new method performs better than covariance tracking and other tracking algorithms without requiring any multiplication operations.
In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similar to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on midwave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.