The Statfjord field entered into the blow down phase after 30 years of production. Production of injection gas and gas liberated from residual oil is the main production target in this phase. In some areas, the gas cap has been produced and the wells are producing mainly water until the solution gas is mobilized. These wells have gone through large changes in gas-liquid-ratio (GLR) and water-cut (WCT). Production tests from wells located in such areas have been used when analyzing the ability of multiphase-flow correlations to model vertical lift performance (VLP). Accurate modeling of the VLP is critical to predict a realistic production rate during the blow down phase. Measured wellhead (THP) and downhole pressures from about 80 production tests, from four wells, were used to analyze the accuracy of VLP correlations at widely varying flow conditions (GLR, WCT, and THP). Altogether 17 multiphase pressure drop correlations incorporated in the program Prosper were tested by comparing observed and calculated downhole pressures. Based on the production tests the ability of the different correlations to predict the VLP varies with the following top 4: Hagedorn Brown, Petroleum Experts, Petroleum Experts 2, and Petroleum Experts 3. These correlations are recommended if no measured data is available. In general a somewhat low pressure drop is predicted at low gas-liquid ratio (GLR), and a somewhat high pressure drop is predicted at high GLR. After tuning, accurate predictability was observed for the different correlations for limited ranges in GLR e.g. 50-300 Sm3/Sm3. However, for larger ranges in GLR it was not possible to achieve an accurate VLP correlation, even after tuning. Hagedorn Brown and Petroleum experts seem to be the most accurate correlations for a wide range of producing GLR. The error in the predicted production performance when a single VLP correlation is used can be substantial for highly productive wells with large variations in producing GLR. It is recommended to shift the tuning following the GLR development.
The production experience from the Statfjord Field on the Norwegian Continental Shelf is one of the greatest adventures in modern oil and gas history. After achieving very high oil recovery factor using a predominant drainage strategy with pressure maintenance by water and gas injection, the drainage strategy in the field has since 2007/2008 been changed to reservoir depressurization. Prior to depressurization start-up, the field has produced about 652 million Sm3 (4.1 billion bbl) oil and 187 billion Sm3 gas. Currently, the field is producing at an oil rate of approximately 5 300 Sm3/d and a gas rate of about 11 million Sm3/d. Estimates indicate that successful implementation of the new drainage strategy will continue and lead to an ultimate oil recovery of higher than 67% and a significant additional gas production, as a result of the depressurization process. In addition, the field life will be extended from 2009 to 2025, and this will contribute to lifetime extension of the attached satellite fields. The main purpose of this paper is to provide a description of the multidisciplinary approach used for evaluation and planning of the Statfjord Late Life (SFLL) with reservoir depressurization, share learnings from depressurization start-up and address challenges, uncertainties and opportunities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.