Predicting risk for major adverse cardiovascular events (MACE) is an evidence-based practice that incorporates lifestyle, history, and other risk factors. Statins reduce risk for MACE by decreasing lipids, but it is difficult to stratify risk following initiation of a statin. Genetic risk determinants for on-statin MACE are low-effect size and impossible to generalize. Our objective was to determine high-level epistatic risk factors for on-statin MACE with GWAS-scale data. Controlled-access data for 5890 subjects taking a statin collected from Vanderbilt University Medical Center’s BioVU were obtained from dbGaP. We used Random Forest Iterative Feature Reduction and Selection (RF-IFRS) to select highly informative genetic and environmental features from a GWAS-scale dataset of patients taking statin medications. Variant-pairs were distilled into overlapping networks and assembled into individual decision trees to provide an interpretable set of variants and associated risk. 1718 cases who suffered MACE and 4172 controls were obtained from dbGaP. Pathway analysis showed that variants in genes related to vasculogenesis (FDR = 0.024), angiogenesis (FDR = 0.019), and carotid artery disease (FDR = 0.034) were related to risk for on-statin MACE. We identified six gene-variant networks that predicted odds of on-statin MACE. The most elevated risk was found in a small subset of patients carrying variants in COL4A2, TMEM178B, SZT2, and TBXAS1 (OR = 4.53, p < 0.001). The RF-IFRS method is a viable method for interpreting complex “black-box” findings from machine-learning. In this study, it identified epistatic networks that could be applied to risk estimation for on-statin MACE. Further study will seek to replicate these findings in other populations.
Background Predicting risk for major adverse cardiovascular events (MACE) is an evidence-based practice that incorporates lifestyle, history, and other risk factors. Statins reduce risk for MACE by decreasing lipids, but it is difficult to stratify risk following initiation of a statin. Genetic risk determinants for on-statin MACE are low-effect size and impossible to generalize. Our objective was to determine high-level epistatic risk factors for on-statin MACE with GWAS-scale data. Methods Controlled-access data for 5,980 subjects taking a statin collected from Vanderbilt University Medical Center's BioVU were obtained from dbGaP. We used Random Forest Iterative Feature Reduction and Selection (RF-IFRS) to select highly informative genetic and environmental features from a GWAS-scale dataset of patients taking statin medications. Variant-pairs were distilled into overlapping networks and assembled into individual decision trees to provide an interpretable set of variants and associated risk. Results 1,718 cases who suffered MACE and 4,172 controls were obtained from dbGaP. Pathway analysis showed that variants in genes related to vasculogenesis (FDR=0.024), angiogenesis (FDR=0.019), and carotid artery disease (FDR=0.034) were related to risk for on-statin MACE. We identified six gene-variant networks that predicted odds of on-statin MACE. The most elevated risk was found in a small subset of patients carrying variants in COL4A2, TMEM178B, SZT2, and TBXAS1 (OR=4.53, p<0.001). Conclusions The RF-IFRS method is a viable method for interpreting complex "black-box" findings from machine-learning. In this study, it identified epistatic networks that could be applied to risk estimation for on-statin MACE. Further study will seek to replicate these findings in other populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.