Background: Depression is a highly prevalent mental illness that severely impacts the quality of life of affected individuals. Our recent studies demonstrated that diterpene ginkgolides (DG) have antidepressant effects in mice. However, the underlying molecular mechanisms remained much unclear. Methods: In this study, we assessed the antidepressant effects of chronic DG therapy in rats by evaluating depression-related behaviors, we also examined potential side effects using biochemical indicators. Furthermore, we performed an in-depth molecular network analysis of gene-protein-metabolite interactions on the basis of metabolomics. Results: Chronic DG treatment significantly ameliorated the depressive-like behavioral phenotype. Furthermore, the neurotrophin signaling-related NT3-TrkA and Ras-MAPK pathways may play an important role in the antidepressant effect of DG in the hippocampus. Conclusion: These findings provide novel insight into the mechanisms underlying the antidepressant action of DG, and should help advance the development of new therapeutic strategies for depression.
Introduction LncRNAs play important roles in multiple diseases including asthma, while there are a few reports on the role of lncRNA H19 about asthma. This study aimed to investigate the roles and mechanisms of lncRNA H19 in asthma. Methods We detected lncRNA H19 and Muc5ac mRNA by establishing a murine asthma model and an in vitro inflammation model. Regulatory roles of lncRNA H19 in asthma were explored by lncRNA H19 overexpression or knockdown in vitro. To study its mechanisms, we detect p-NF-κB and p-Akt expression, and treated 16-HBE cells with inhibitors of PI3K. To study regulatory effects of miR-675-3p on Muc5ac, miR-675-3p mimics and inhibitors were respectively transfected into 16-HBE cells. Results Firstly, we established a murine asthma model and an in vitro inflammation model. We found that lncRNA H19 expression was decreased, while Muc5ac mRNA was increased in lung tissues of murine asthma model and in the in vitro inflammation model. lncRNA H19 overexpression increased Muc5ac mRNA expression and lncRNA H19 knockdown decreased Muc5ac mRNA expression in 16-HBE cells. Moreover, lncRNA H19 overexpression further increased Muc5ac expression in TNFα-induced in vitro inflammation model. lncRNA H19 knockdown decreased p-Akt and p-NF-κB expression. Inhibitors of PI3K abolished Muc5ac induced by lncRNA H19 overexpression. Although miR-675-3p was increased by lncRNA H19 overexpression, it had no regulatory effects on Muc5ac expression. Discussion These results demonstrated that lncRNA H19 positively regulates Muc5ac expression through PI3K/Akt /NF-κB pathway in the in vitro inflammation model. Therefore, this study indicated that decreased lncRNA H19 in asthma might play a protective role relieving mucus overproduction, and lncRNA H19 might be a potential target for asthma treatment.
Allergic asthma is an airway inflammatory disease dominated by type 2 immune responses and there is currently no curative therapy for asthma. CD5‐like antigen (CD5L) has been known to be involved in a variety of inflammatory diseases. However, the role of CD5L in allergic asthma remains unclear. In the present study, mice were treated with recombinant CD5L (rCD5L) during house dust mite (HDM) and ovalbumin (OVA) challenge to determine the role of CD5L in allergic asthma, and the underlying mechanism was further explored. Compared with PBS group, serum CD5L levels of asthmatic mice were significantly decreased, and the levels of CD5L in lung tissues and bronchoalveolar lavage fluid (BALF) were significantly increased. CD5L reduced airway inflammation and Th2 immune responses in asthmatic mice. CD5L exerted its anti‐inflammatory function by increasing CD11chigh alveolar macrophages (CD11chigh AMs), and the anti‐inflammatory role of CD11chigh AMs in allergic asthma was confirmed by CD11chigh AMs depletion and transfer assays. In addition, CD5L increased the CD5L+ macrophages and inhibited NLRP3 inflammasome activation by increasing HDAC2 expression in lung tissues of asthmatic mice. Hence, our study implicates that CD5L has potential usefulness for asthma treatment.
Background Serum creatinine is a widely used biomarker for evaluating renal function. Sarcosine oxidase enzymatic (SOE) analysis is currently the most widely used method for the detection of creatinine. This method was negatively interfered with by calcium dobesilate, causing pseudo‐reduced results. The aim of this study was to explore a new method to alleviate the negative interference of this drug on creatinine detection. Method We formulated eight drug concentrations and 12 creatinine concentrations from serum. The SOE method, the new method, and the Jaffe method were used for detection in five systems. Creatinine biases were analyzed under the conditions with or without the interference of calcium dobesilate, at consistent or inconsistent creatinine concentrations. Creatinine concentrations were also analyzed at three medical decision levels (MDLs). Results Calcium dobesilate had negative interference in creatinine SOE analysis. With the increase in calcium dobesilate concentrations, the negative bias increases. The new BG method showed an anti‐negative interference effect. In the Roche system, the BG method reduced the negative bias from −71.11% to −16.7%. In the Abbott system, bias was reduced from −45.15% to −2.74%. In the Beckman system, the bias was reduced from −65.36% to −7.58%. In the Siemens system, the bias was reduced from −58.62% to −7.58%. In the Mindray system, the bias was reduced from −36.29% to −6.84%. Conclusion The new method alleviated the negative interference of calcium dobesilate in creatinine SOE detection. The negative bias could be reduced from −60% or −70% to less than −20%.
Efferocytosis can resolve airway inflammation and enhance airway tolerance in allergic asthma. While previous work has reported that progranulin (PGRN) regulated macrophage efferocytosis, but it is unclear whether PGRN‐mediated efferocytosis is associated with asthma. Here, we found that in an ovalbumin (OVA)‐induced allergic asthma model, the airway inflammation was suppressed and the apoptosis in lung tissues was ameliorated in PGRN‐deficient mice. In contrast, PGRN knockdown in human bronchial epithelial cells increased apoptosis in vitro. Furthermore, PGRN‐deficient macrophages had significantly stronger efferocytosis ability than wild type (WT) macrophages both in vitro and in vivo. PGRN‐deficient peritoneal macrophages (PMs) exhibited increased expression of genes associated with efferocytosis including milk fat globule‐epidermal growth factor 8 (MFG‐E8), peroxisome proliferator‐activated receptor gamma (PPAR‐γ) and sirtuin1 (SIRT1) and increased capacity to produce the anti‐inflammatory mediator interleukin (IL)‐10 during efferocytosis. GW9662, the inhibitor of PPAR‐γ, abolished increased efferocytosis and MFG‐E8 expression in PGRN‐deficient PMs suggesting that PGRN deficiency enhanced MFG‐E8‐mediated efferocytosis through PPAR‐γ. Correspondingly, efferocytosis genes were increased in the lungs of OVA‐induced PGRN‐deficient mice. GW9662 treatment reduced MFG‐E8 expression but did not significantly affect airway inflammation. Our results demonstrated that PGRN deficiency enhanced efferocytosis via the PPAR‐γ/MFG‐E8 pathway and this may be one of the reasons PGRN deficiency results in inhibition of airway inflammation in allergic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.